搜文章
推荐 原创 视频 Java开发 iOS开发 前端开发 JavaScript开发 Android开发 PHP开发 数据库 开发工具 Python开发 Kotlin开发 Ruby开发 .NET开发 服务器运维 开放平台 架构师 大数据 云计算 人工智能 开发语言 其它开发
Lambda在线 > AINLP > 【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

AINLP 2020-07-01



【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等






毫不夸张地说,PRML 当之无愧算得上是 AI 领域的圣经了。PRML 涵盖面广,语言通俗,例子和习题更加详细,附带更多基础性的讲解和指引,难度梯度设置更为合理,是其深受广大中老年 PhD 朋友喜爱的原因。

将 Bishop 大神的 PRML 称为机器学习圣经一点也不为过,该书系统地介绍了模式识别和机器学习领域内详细的概念与基础。书中有对概率论基础知识的介绍,也有高阶的线性代数和多元微积分的内容,适合高校的研究生以及人工智能相关的从业人员学习。

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

PRML 内容十分丰富,共有 14 章的内容,每一章都是干货满满。整体目录如下:

  • 第一章 介绍

  • 第二章 概率分布

  • 第三章 线性回归模型

  • 第四章 线性分类模型

  • 第五章 神经网络

  • 第六章 内核方法

  • 第七章 稀疏内核机器

  • 第八章 图形模型

  • 第九章 混合模型和 EM

  • 第十章 近似推断

  • 第十一章 采样方法

  • 第十二章 连续潜在变量

  • 第十三章 顺序数据

  • 第十四章 组合模型

另外,知乎上关于这个关于“PRML 为何是机器学习的经典书籍中的经典?”的高赞回答或许会给大家一些启发:

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

Luau Lawrence 的回答:

https://www.zhihu.com/question/35992297/answer/67009652

最近 GitHub 上网友 ctgk 更新公布了 Python3 实现的经典机器学习图书《Pattern Recognition and Machine Learning》中的代码。在它之前曾有过 Matlab 版本,而新公布的版本采用机器学习领域最流行的 python 代码实现,比较符合大家的使用习惯。最重要的是代码以 Jupyter notebook 形式呈现,可视化结果非常适合边看书边调试代码。

MLPR python 代码链接:

https://github.com/ctgk/PRML

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

除此之外,官方也发布了对应的 Matlab 版本的代码:

https://github.com/PRML/PRMLT

【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等

**▌**PRML 书籍


  • 本文版权归作者和AIQ共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出




PRML 是模式识别和机器学习领域的经典著作,出版于 2007 年。该书作者 Christpher M. Bishop 是模式识别和机器学习领域的大家,其 1995 年所著的“Nerual Networks for Pattern Recognition”也是模式识别、人工神经网络领域的经典著作。

PRML 深入浅出地介绍了模式识别与机器学习的基本理论和主要方法,同时还涵盖了模式识别与机器学习领域的一些最新进展,不仅适合初学者学习,而且对专业研究人员也有很大的参考价值。

目录(对应中文译本)

  1. 导论

  2. 概率分布

  3. 线性回归模型

  4. 线性分类模型

  5. 神经网络

  6. 核方法

  7. 讲 SVM 。

  8. 现代基于图模型

  9. EM 算法

  10. 近似推断

  11. 采样

  12. PCA 及一些改进

  13. HMM 模型和 LDS

  14. 集成方法

**▌**PRML 笔记视频学习资料荟萃(敲黑板,该划重点了)



《Pattern Recognition and Machine Learning》(PRML) by Bishop

  1. 原版图书

  • http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop+-+Pattern+Recognition+And+Machine+Learning+-+Springer++2006.pdf

  1. 勘误:

  • https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-errata-3rd-20110921.pdf

  1. 习题答案

  • https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-web-sol-2009-09-08.pdf

  1. Christopher Bishop 微软剑桥研究院院长 个人主页

  • https://www.microsoft.com/en-us/research/people/cmbishop/

  1. 部分章节 PPT

  • https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-slides-1.pdf

  • https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-slides-2.pdf

  • https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-slides-3.pdf

  • https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-slides-4.pdf

Bishop 新书《Model Based Machine Learning》

  1. PRML 大神、微软剑桥研究院院长 Chris Bishop 与 John Winn 的机器学习新书。最入门级别的机器学习图书, 全书从实际案例开始讲,数学公式很少,非常适合当做读 PRML 之前的入门。

  2. http://www.mbmlbook.com/

代码

  1. Matlab 实现

  • http://prml.github.io/

  1. Python

  • https://github.com/ctgk/PRML

视频

  1. 布朗大学 CSCI1420 《机器学习》 主要参考用书采用了 PRML,内容安排也和 PRML 一致,共 23 课。

  • http://cs.brown.edu/courses/csci1420/

PRML 笔记

  1. Jian Xiao《Notes on Pattern Recognition and Machine Learning (Bishop)》

  2. 田渊栋《Some notes on Pattern Recognition and Machine Learning》

  • http://www.yuandong-tian.com/notesOnPRML.pdf

  1. ChillyRain 的"PRML Notes"系列博文

  • http://chillyrain.is-programmer.com/categories/7613/posts

  1. Bishop’s PRML book: review and insights, chapters 1–3

  • https://techburst.io/bishops-prml-book-review-and-insights-chapters-1-3-528bb5cfaade

  1. PRML 读书会

  • http://www.52nlp.cn/category/pattern-recognition-and-machine-learning-2

  • http://www.52nlp.cn/prml 读书会前言

  • PDF PRML 读书会合集打印版

PRML 相关资料:第三版,学习笔记,中文译本等

链接:https://pan.baidu.com/s/1oiZST2XgWHg7a4Xl3RUW7g 提取码:pthb



推荐阅读








关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。


阅读至此了,分享、点赞、在看三选一吧🙏

版权声明:本站内容全部来自于腾讯微信公众号,属第三方自助推荐收录。《【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等》的版权归原作者「AINLP」所有,文章言论观点不代表Lambda在线的观点, Lambda在线不承担任何法律责任。如需删除可联系QQ:516101458

文章来源: 阅读原文

相关阅读