搜文章
推荐 原创 视频 Java开发 iOS开发 前端开发 JavaScript开发 Android开发 PHP开发 数据库 开发工具 Python开发 Kotlin开发 Ruby开发 .NET开发 服务器运维 开放平台 架构师 大数据 云计算 人工智能 开发语言 其它开发
Lambda在线 > CUDATEK酷达智能 > 2017CCF青年精英大会|汤晓鸥:人工智能的明天,中国去哪儿?

2017CCF青年精英大会|汤晓鸥:人工智能的明天,中国去哪儿?

CUDATEK酷达智能 2017-10-30

CUDATEK是深度学习软硬件解决方案专家,提供GPU硬件解决方案;CUDA解决方案专家; 面向制造业,影视动漫娱乐硬件解决方案;专业计算金融GPU解决方案;IVA GPU软硬件解决方案。

5月20日,以“科研·产业·融合”为主题的2017CCF青年精英大会在北京召开。本届大会由中国计算机学会主办,科技创新产业服务平台Xtecher协办。

在会议上,香港中文大学教授汤晓鸥做了主题为《人工智能的明天,中国去哪?》的特邀报告。汤晓鸥在演讲中,讲述了人工智能和深度学习的发展,并指出,深度学习的三大核心要素,就是算法设计、高性能的计算能力,以及大数据。

以下为部分演讲内容:

不管是中国人工智能接下来如何发展,还是年轻人如何创业或者做研究,我们要做的事情也就是这三件:

第一,要坚持,要花时间把基础打好。

第二,要做创新。要做新的东西,不要老是跟在别人后面走。

第三,要把飘在上面的东西落地,要产业化。

今天从我们实验室的研究成果和公司做的产品,来讲讲我对这三个方面的理解。

人工智能和深度学习的突破

首先,什么是人工智能?这个概念现在已经非常难定义了,大家几乎把所有的事情都往人工智能上靠。从我的理解来讲,人工智能真正落地的部分就是深度学习。因为以前的人工智能确实是在很多情况下用不起来,人手设计的智能还是比较难超越人来做某一件事情。而有了深度学习之后,我们可以把这个过程变成一个数据驱动的过程——当做某一件特定事情时数据量及参数量大到一定程度时,机器就可能在做这件事情上超过人类。很多现实中落地的产品化的东西,大部分是深度学习做出来的。深度学习做的东西,成功的案例比较多,一方面是在语音识别领域,另外可能更多的是视觉这方面,所以大家可以看到很多计算机视觉方面新的成果。我今天给在座讲的人工智能其实也就是计算机视觉,是用深度学习去做计算机视觉,就变得更窄了。

深度学习到底在做什么事情?实际上他所做的事情抽象出来是比较简单的,就是在做一个从X到Y的回归、或者说从A到B的Mapping(对应)——你给它一个输入,我怎么样给出一个对应的输出?特殊的地方就是深度学习把这件事情做得非常非常好。以前也有其他算法可以做,只不过一直做不过人,现在深度学习做到了极致。比如说给了一张人脸照片,它就可以给你对应出这个人的名字;给你一个物体的形状,它就可以告诉你是什么物体;给一个车的行驶场景,我就可以给你输出这个车应该往哪儿拐;给一个棋局,它能算出下一步怎么走;给一个医疗的图像,能帮你判断这是什么病……实际上就是这样的一个过程。不要把人工智能想象成可以超越人类,可以控制人类,这些都是所谓的“好莱坞的人工智能”或者想象中的人工智能,真正人工智能在现在这个阶段其实就是做这么简单个事。当然做成这个简单的事情其实已经很不简单了。

最近这几年深度学习确实在学术界、工业界取得了重大的突破。第一个突破是在语音识别上。Hinton和微软的邓力老师,在2011年用深度学习在语音识别上取得了巨大的成功。昨天可能大家在微信也刷屏了,我们中国科大毕业的师兄邓力老师从微软出来到顶级对冲基金工作。我的理解这也是一个A to B的mapping 的过程:把邓老师的深度学习的经验等内容都输入到对冲基金的算法里,这个对冲基金的钱就自动Map到了邓老师口袋里。

语音识别取得了巨大成功以后,紧接着在视觉方面又取得了重大突破。2012年时,Hinton在ImageNet上将图像识别一下子提高了十几个点,以前我们都一年一个点在推,他一年就推了十年的进步,在学术界引起了很大的轰动。2014年我们团队做人脸识别,通过深度学习,做到算法首次超过人眼的成绩。

最后,在2016年,还是谷歌最厉害,每年120亿美金的研发投入没有白投,下了一盘棋叫AlphaGo,这盘棋下完之后人工智能就不需要我们解释了,大家忽然都明白了,人工智能原来是这么回事儿,就是下棋。

接着人工智能在自动驾驶领域也取得了一些重大的突破。现在比较热门的是医疗影像方面,借助人工智能进行诊断。

深度学习的三个核心要素




2017CCF青年精英大会|汤晓鸥:人工智能的明天,中国去哪儿?

学习算法的设计,你设计的大脑到底够不够聪明

要有高性能的计算能力,训练一个大的网络

必须要有大数据


我们训练出来这样一个大脑,可以把它应用到各个方向,做出很多不同领域的不同技术。在人脸方面我们做了人脸检测、人脸关键点定位、身份证对比、聚类以及人脸属性、活体检测等等。智能监控方面,做了人,机动车,非机动车视频结构化研究,人体的属性,我们定义了大约70种。人群定义了90多种属性。下面这些是衣服的搜索、物体的检测、场景的分类和车型的检测,车型检测我们标注了几千种车型的分类。在文字方面,小票的识别、信用卡的识别、车牌的识别,这些都是由深度学习的算法来做的。同时在图像的处理方面,在去雾、超分辨率、去抖动、去模糊,HDR、各种智能滤镜的设计都是用深度学习的算法,我们基本上用一套大脑做很多的任务。

深度学习另外一个门槛就是高性能计算,以前高性能计算大家都是讲的CPU集群,现在做深度学习都是GPU,把数百块GPU连接起来做成集群目前是一个比较大的门槛。我们在北京做了三个GPU的集群,在香港做了一个大的集群,用这些集群,原来一个月才能训练出来的网络,加速到几个小时就能训练完,因此我们训练了大量的网络。

深度学习第三个门槛就是大数据,如果把人工智能比喻成一个火箭的话,大数据就是这个火箭的原料。

我们与300多家工业界的厂商客户进行合作,积累了大量的数据,数亿的图片,我们有300多人的团队专门做这个数据标注。包括几千类车型的数据、人群的大数据以及衣服的搜索和分类的数据库,这些对于学术界以及工业界都是很有益的。实际上谷歌所做的数据体量更大,他们和National Institutes of Health (NIH)合作很快会开放一个非常大的医疗图像的数据库。在医疗方面我相信大家很快会有大量的数据进行处理,这个时候对于我们的高性能计算又提出了一些新的要求。

实验室有幸对深度学习研究较早。在计算机视觉包括人脸检测等各个方面起步较早,这里列了18项计算机视觉领域由我们在全球最早提出来深度学习解决方案的问题,也相当于对创新的一些贡献。我们被评为全亚洲唯一的人工智能研究十大先驱实验室,非常荣幸跟MIT、斯坦福、伯克利这样的名校,以及深度学习的顶级工业实验室脸书、谷歌的深度学习负责人团队等等在一起获选。我们也在研究一些现在没有的技术,比如说,大家可能以前见过很多依赖深度摄像头才能做的人体跟踪算法(比如Kinect)。目前我们团队做的算法,用很便宜的单个RGB摄像头就可以做到同样效果,这是非常不容易的,尤其要做到实时,在智能家居,自动驾驶等方面都有很大的应用前景。

业务咨询与购买:karena@cudatek.com



上海酷达计算机科技有限公司

TEL 021-54181199



本文来源:网络

版权声明:本站内容全部来自于腾讯微信公众号,属第三方自助推荐收录。《2017CCF青年精英大会|汤晓鸥:人工智能的明天,中国去哪儿?》的版权归原作者「CUDATEK酷达智能」所有,文章言论观点不代表Lambda在线的观点, Lambda在线不承担任何法律责任。如需删除可联系QQ:516101458

文章来源: 阅读原文

相关阅读

关注CUDATEK酷达智能微信公众号

CUDATEK酷达智能微信公众号:cudatek

CUDATEK酷达智能

手机扫描上方二维码即可关注CUDATEK酷达智能微信公众号

CUDATEK酷达智能最新文章

精品公众号随机推荐