搜文章
推荐 原创 视频 Java开发 iOS开发 前端开发 JavaScript开发 Android开发 PHP开发 数据库 开发工具 Python开发 Kotlin开发 Ruby开发 .NET开发 服务器运维 开放平台 架构师 大数据 云计算 人工智能 开发语言 其它开发
Lambda在线 > 机器学习研究会 > 【重磅】深度学习顶会 ICLR 2018 匿名提交论文列表(附pdf下载链接)

【重磅】深度学习顶会 ICLR 2018 匿名提交论文列表(附pdf下载链接)

机器学习研究会 2017-10-31

【导读】ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议),2013 年才刚刚成立了第一届。这个一年一度的会议虽然今年2017年办到第六届,已经被学术研究者们广泛认可,被认为「深度学习的顶级会议」。这个会议由位列深度学习三大巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办。Yoshua Bengio 是蒙特利尔大学教授,深度学习三巨头之一,他领导蒙特利尔大学的人工智能实验室(MILA)进行 AI 技术的学术研究。MILA 是世界上最大的人工智能研究中心之一,与谷歌也有着密切的合作。 Yann LeCun 就自不用提,同为深度学习三巨头之一的他现任 Facebook 人工智能研究院(FAIR)院长、纽约大学教授。作为卷积神经网络之父,他为深度学习的发展和创新作出了重要贡献。


ICLR 采用Open Review 评审制度。Open Review 则非常不同,根据规定,所有提交的论文都会公开姓名等信息,并且接受所有同行的评价及提问(open peer review),任何学者都可或匿名或实名地评价论文。而在公开评审结束后,论文作者也能够对论文进行调整和修改。目前 ICLR 的历届所有论文及评审讨论的内容,都完整地保存在 OpenReview.net 上,它也是 ICLR 的官方投稿入口。OpenReview.net 是马萨诸塞大学阿默斯特学院 Andrew McCallum 为 ICLR 2013 牵头创办的一个公开评审系统,秉承公开同行评审、公开发表、公开来源、公开讨论、公开引导、公开推荐、公开 API 及开源等八大原则,得到了 Facebook、Google、NSF 和马萨诸塞大学阿默斯特中心等机构的支持。


以下为论文列表

来源:https://openreview.net/group?id=ICLR.cc/2018/Conference

专知进行关键词统计信息如下:

可以看出 深度学习 神经网络 生成式对抗网络、强化学习、循环神经网络等等是投稿论文热点。


论文列表:

《Improving Discriminator-Generator Balance in Generative Adversarial Networks》:

《Placeholder》:

《Complex- and Real-Valued Neural Network Architectures》:

  • 关键词:complex numbers complex-valued neural network multi-layer perceptron architecture

《Revisiting Knowledge Base Embedding as Tensor Decomposition》:

  • 关键词:Knowledge base embedding

《Tree2Tree Learning with Memory Unit》:

《Combining Model-based and Model-free RL via Multi-step Control Variates》:

《Hyperedge2vec: Distributed Representations for Hyperedges》:

  • 关键词:hypergraph representation learning tensors

《Deep Complex Networks》:

  • 关键词:deep learning complex-valued neural networks

《OMIE: The Online Mutual Information Estimator》:

  • 关键词:Deep Learning Neural Networks Information Theory Generative models

《Few-Shot Learning with Variational Homoencoders》:

  • 关键词:generative models one-shot learning metalearning pixelcnn hierarchical bayesian omniglot

《Video Action Segmentation with Hybrid Temporal Networks》:

  • 关键词:action segmentation video labeling temporal networks

《Learning Efficient Tensor Representations with Ring Structure Networks》:

  • 关键词:Tensor Decomposition Tensor Networks Stochastic Gradient Descent

《Fitting Data Noise in Variational Autoencoder》:

  • 关键词:variational autoencoder noise modelling representation learning generative model disentanglement

《Bayesian Uncertainty Estimation for Batch Normalized Deep Networks》:

  • 关键词:uncertainty estimation deep learning Bayesian learning batch normalization

《A Goal-oriented Neural Conversation Model by Self-Play》:

  • 关键词:conversation model seq2seq self-play reinforcement learning

《Automatic Goal Generation for Reinforcement Learning Agents》:

  • 关键词:Reinforcement Learning Multi-task Learning Curriculum Learning

《A novel method to determine the number of latent dimensions with SVD》:

  • 关键词:SVD Latent Dimensions Dimension Reductions Machine Learning

《Universal Agent for Disentangling Environments and Tasks》:

  • 关键词:reinforcement learning transfer learning

《Covariant Compositional Networks For Learning Graphs》:

  • 关键词:graph neural networks message passing label propagation equivariant representation

《Deep learning mutation prediction enables early stage lung cancer detection in liquid biopsy》:

  • 关键词:somatic mutation variant calling cancer liquid biopsy early detection convolution deep learning machine learning lung cancer error suppression mutect

《Learning To Generate Reviews and Discovering Sentiment》:

  • 关键词:unsupervised learning representation learning deep learning

《Noise-Based Regularizers for Recurrent Neural Networks》:

《Prediction Under Uncertainty with Error Encoding Networks》:

《Genative Entity Networks: Disentangling Entitites and Attributes in Visual Scenes using Partial Natural Language Descriptions》:

  • 关键词:VAE Generative Model Vision Natural Language

《WSNet: Learning Compact and Efficient Networks with Weight Sampling》:

  • 关键词:Deep learning model compression

《TD Learning with Constrained Gradients》:

  • 关键词:Reinforcement Learning TD Learning DQN

《Improving the Improved Training of Wasserstein GANs》:

  • 关键词:GAN WGAN

《Exploring Representation Methods for Sequence Labeling》:

《Fraternal Dropout》:

  • 关键词:fraternal dropout activity regularization recurrent neural networks RNN LSTM faster convergence

《What are image captions made of?》:

  • 关键词:image captioning representation learning interpretability rnn multimodal vision to language

《Sequential Coordination of Deep Models for Learning Visual Arithmetic》:

  • 关键词:reinforcement learning pretrained deep learning perception algorithmic

《DETECTING ADVERSARIAL PERTURBATIONS WITH SALIENCY》:

  • 关键词:Adversarial Examples Detection Saliency Model Interpretation

《An inference-based policy gradient method for learning options》:

  • 关键词:reinforcement learning hierarchy options inference

《Generative Entity Networks: Disentangling Entities and Attributes in Visual Scenes using Partial Natural Language Descriptions》:

  • 关键词:VAE Vision Natural Language

《Don’t encrypt the data; just approximate the model \ Towards Secure Transaction and Fair Pricing of Training Data》:

  • 关键词:Applications Security in Machine Learning Fairness and Security Model Compression

《Alpha-divergence bridges maximum likelihood and reinforcement learning in neural sequence generation》:

  • 关键词:neural network reinforcement learning natural language processing machine translation alpha-divergence

《3C-GAN: AN CONDITION-CONTEXT-COMPOSITE GENERATIVE ADVERSARIAL NETWORKS FOR GENERATING IMAGES SEPARATELY》:

《Parametric Information Bottleneck to \Optimize Stochastic Neural Networks》:

  • 关键词:Information Bottleneck Deep Neural Networks

《Towards a Testable Notion of Generalization for Generative Adversarial Networks》:

  • 关键词:generative adversarial networks Wasserstein GAN generalization theory

《TOWARDS ROBOT VISION MODULE DEVELOPMENT WITH EXPERIENTIAL ROBOT LEARNING》:

  • 关键词:Deep Learning Robotics Artificial Intelligence Computer Vision

《Variational Bi-LSTMs》:

《Learning an Embedding Space for Transferable Robot Skills》:

  • 关键词:Deep Reinforcement Learning Variational Inference Control Robotics

《ON MODELING HIERARCHICAL DATA VIA ENCAPSULATION OF PROBABILITY DENSITIES》:

  • 关键词:embeddings

《withdraw》:

《Neural Compositional Denotational Semantics for Question Answering》:

  • 关键词:question answering knowledge graph compositional model semantics

《Model compression via distillation and quantization》:

《Binarized Back-Propagation: Training Binarized Neural Networks with Binarized Gradients》:

  • 关键词:Neural Network acceleration Low Precision neural networks.

《DON’T ENCRYPT THE DATA, JUST APPROXIMATE THE MODEL/ TOWARDS SECURE TRANSACTION AND FAIR PRICING OF TRAINING DATA》:

  • 关键词:Security in Machine Learning Information Security Fairness and Privacy

《Optimal transport maps for distribution preserving operations on latent spaces of Generative Models》:

  • 关键词:GANs transport

《Learning Representations for Faster Similarity Search》:

《Maximum a Posteriori Policy Optimisation》:

  • 关键词:Reinforcement Learning Variational Inference Control

《MaskGAN: Textual Generative Adversarial Networks from Filling-in-the-Blank》:

  • 关键词:Deep learning GAN

《Do Convolutional Neural Networks act as Compositional Nearest Neighbors?》:

  • 关键词:interpreting convolutional neural networks nearest neighbors generative adversarial networks

《Kernel Implicit Variational Inference》:

《THINK VISUALLY: QUESTION ANSWERING THROUGH VIRTUAL IMAGERY》:

《BLOCK-NORMALIZED GRADIENT METHOD: AN EMPIRICAL STUDY FOR TRAINING DEEP NEURAL NETWORK》:

《Autonomous Vehicle Fleet Coordination With Deep Reinforcement Learning》:

  • 关键词:Deep Reinforcement Learning mult-agent systems

《Kronecker-factored Curvature Approximations for Recurrent Neural Networks》:

  • 关键词:optimization K-FAC natural gradient recurrent neural networks

《POLICY DRIVEN GENERATIVE ADVERSARIAL NETWORKS FOR ACCENTED SPEECH GENERATION》:

  • 关键词:speech generation accent gan adversarial reinforcement memory lstm policy gradients human

《Scalable Private Learning with PATE》:

  • 关键词:privacy differential privacy machine learning deep learning

《AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks》:

  • 关键词:asynchronous neural network deep learning graph tree rnn

《Connectivity Learning in Multi-Branch Networks》:

  • 关键词:connectivity learning multi-branch networks image categorization

《GATED FAST WEIGHTS FOR ASSOCIATIVE RETRIEVAL》:

  • 关键词:fast weights RNN associative retrieval time-varying variables

《Generating Adversarial Examples with Adversarial Networks》:

  • 关键词:adversarial examples generative adversarial network black-box attack

《Online Learning Rate Adaptation with Hypergradient Descent》:

《Relational Neural Expectation Maximization》:

  • 关键词:Common-sense Physical Reasoning Intuitive Physics Representation Learning Model building

《Learning Awareness Models》:

  • 关键词:Awareness Prediction Seq2seq Robots

《Revisiting The Master-Slave Architecture In Multi-Agent Deep Reinforcement Learning》:

  • 关键词:Deep Reinforcement Learning Multi-Agent Reinforcement Learning StarCraft Micromanagement Tasks

《STRUCTURED ALIGNMENT NETWORKS》:

  • 关键词:structured attention sentence matching

《On the regularization of Wasserstein GANs》:



完整内容请点击“阅读原文”

版权声明:本站内容全部来自于腾讯微信公众号,属第三方自助推荐收录。《【重磅】深度学习顶会 ICLR 2018 匿名提交论文列表(附pdf下载链接)》的版权归原作者「机器学习研究会」所有,文章言论观点不代表Lambda在线的观点, Lambda在线不承担任何法律责任。如需删除可联系QQ:516101458

文章来源: 阅读原文

相关阅读

关注机器学习研究会微信公众号

机器学习研究会微信公众号:gh_5906530d307c

机器学习研究会

手机扫描上方二维码即可关注机器学习研究会微信公众号

机器学习研究会最新文章

精品公众号随机推荐

上一篇 >>

性能测试之jmeter