搜文章
推荐 原创 视频 Java开发 iOS开发 前端开发 JavaScript开发 Android开发 PHP开发 数据库 开发工具 Python开发 Kotlin开发 Ruby开发 .NET开发 服务器运维 开放平台 架构师 大数据 云计算 人工智能 开发语言 其它开发
Lambda在线 > 机器之心 > 使用Faster R-CNN、ResNet诊断皮肤病,深度学习再次超越人类专家

使用Faster R-CNN、ResNet诊断皮肤病,深度学习再次超越人类专家

机器之心 2018-02-28

选自IEEE

机器之心编译


由于在特征识别任务上具有优势,医疗图像诊断一直是人工智能技术应用的重要方向。近日,韩国研究人员应用深度学习算法在皮肤病诊断上击败了 42 位皮肤科专家,其研究发表在了 Nature 系列期刊的《Investigative of Dermatology》上。据介绍,该工作使用了 Faster R-CNN、ResNet 等计算机视觉算法。目前,研究人员已将该方法制成安卓 APP 供人们使用(Google play 下载链接见文中)。


人工智能目前在与专业医生的能力对比上还罕有胜迹。但深度神经网络方法最近已经可以在灰指甲这一真菌疾病的诊断上击败 42 名皮肤科专家了——这种疾病每年困扰着 3500 万美国人。


人工智能在医疗领域的这一巨大成功很大程度上得归功于韩国研究者提出的包含了 50,000 张手指甲与脚趾甲图片组成的庞大数据集。它可以用于训练深度神经网络识别灰指甲——一种可使指甲变色和变脆的常见真菌感染——为深度学习模型带来超越医学专家的强大优势。


「这项研究首次展示了 AI 可以超越人类专家,」韩国首尔第一皮肤病医院的皮肤病医生和临床医生 Seung Seog Han 说。「目前为止,在很多研究中,AI 在糖尿病视网膜病、皮肤癌的诊断和肺部 X 射线解读的表现都达到了和人类专家相近的程度。」


过去的测试包括「AI versus doctors」,AI 在皮肤病诊断中的表现大致上和人类专家持平。但在这项研究中,42 个人类专家仅有 1 个略微在三个试验之一的特定测试场景中超过了深度神经网络。该研究发表在 2018 年 1 月 19 日的网络杂志 PLOS ONE 上。


尤其是,不同于简单案例,深度神经网络在极度困难的案例上表现得比皮肤病专家好得多,Han 介绍道。除了 Han 以外,该团队的主要研究者还包括韩国翰林大学的皮肤病学教授 Gyeong Hun Park,以及韩国蔚山大学的皮肤病学教授 Sung Eun Chang。


Han 作为医生的日常工作包括治疗多种类型的皮肤疾病。但他也学习了几种计算机编程语言例如 C++和 Python,并持续了好几年。当他看到 AlphaGo 击败顶级人类围棋选手李世石的新闻之后,对深度学习产生了兴趣。


深度学习算法通常能解决在大数据中检测模式的专业性任务,而人类难以把握大数据的规律。在这个案例中,韩国的研究者发现可以用微软研究院开发的深度学习算法帮助医生从数字照片中识别可能的灰指甲感染病例。


但所有的深度学习模型都需要大量的数据来训练 AI 识别相关的模式。收集和灰指甲感染相关的有用照片是一项巨大的挑战,因为通常这类照片并没有标准的格式。很多照片都从不同的角度拍摄,并会同时展示健康的指甲和被感染的指甲。此外,由于深度学习算法的技术局限性,所有的照片都需要转换成 224×224 像素,这使得很多照片变得无法识别。


Han 和他的同事们训练了一个基于 Faster R-CNN 的目标检测算法模型来识别和裁剪照片,从而使照片仅包括感染的趾甲和指甲,然后将照片放大,以适用于深度神经网络的训练。大多数的照片来自 MedicalPhoto,这是一个皮肤病临床照片管理程序,由 Han 在 2007 年开发。


然而,Han 不得不收集由 Faster R-CNN 裁剪得到的 10 万张照片,进行人工读取并对每张照片标记两次,以确保训练数据的准确性:不准确或不充分的趾甲/指甲照片被剔除。这项工作花费了他大约 550 个小时,总共超过了 70 天,即使他坚持每天工作数小时,并以 10 秒每张的速度处理照片。


该数据集帮助训练了用于识别病症的卷积神经网络——微软的 ResNet-152 和牛津大学的 VGG-19 模型,以执行识别指甲真菌感染可能病例的工作。这种深度学习方法表现优于 42 位皮肤科专家组成的小组——其中包括 16 名教授、18 名临床医生和 8 名住院医师。


研究者还展示了在额外测试中,深度学习方法通常优于最好的五位皮肤科专家。另外,研究者发现 AI 的诊断评估比一般医生、医学生、护士和非医务人员要好。


研究团队已经放出了一个 demo 做演示:


  • 试用网址:http://nail.medicalphoto.org

  • 安卓 APP:https://play.google.com/store/apps/details?id=com.phonegap.onychomycosis_en


通过用网站和 APP 收集数据,研究人员希望发现当 AI 用于医疗实践时潜在的问题。


Han 和其同事也在皮肤癌等其他皮肤病上测试了深度学习。相关论文在 2 月 8 日发表在了在线期刊《Journal of Investigative Dermatology》上(见文末)。


该研究表明,人工智能能够在极为依赖临床摄影的远距离医疗(telemedicine)中极为有帮助,例如诊断灰指甲等。然而,目前仍然需要人类皮肤科医生使用病人的一般病史、足臭等大量因素来确诊。极少数医生对只基于图片做诊断感到合适。


Han 和他的同事认为自己的研究对普通从业者非常有帮助,他们经常见到病人抱怨皮肤和指甲病状。Han 说,「AI 诊断要比普通临床诊断更为准确,我认为它对普通从业者确定甲癣的治疗方向有所帮助。」


论文:Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm



摘要:我们测试使用深度学习算法对 12 种皮肤病的临床照片进行分类,包括基底细胞癌、鳞状细胞癌、上皮内癌、光化性角化病、脂溢性角化病、恶性黑色素瘤、黑素细胞痣、雀斑样痣、化脓性肉芽肿、血管瘤、皮肤纤维瘤、疣。使用来自 Asan 数据集、MED-NODE 数据集和 atlas site images 中的训练集图像(共 20826 张)对卷积神经网络(Microsoft ResNet-152 模型)进行调整。然后使用 Asan、Hallym 和 Edinburgh 数据集的测试集图像验证训练后的模型。使用 Asan 数据集进行验证时,基地细胞癌、鳞状细胞癌、上皮内癌、黑色素瘤诊断的曲线下面积(AUC)分别是 0.96 ± 0.01、0.83 ± 0.01、0.82 ± 0.02、0.96 ± 0.00。使用 Edinburgh 数据集进行验证时,对应疾病的曲线下面积分别是 0.90 ± 0.01、0.91 ± 0.01、0.83 ± 0.01、0.88 ± 0.01。使用 Hallym 数据集进行验证时,基底细胞癌诊断的敏感度是 87.1% ± 6.0%。使用 480 张 Asan 和 Edinburgh 图像接受测试的算法性能可与 16 位皮肤科医生媲美。为了提高 CNN 的性能,我们还应该收集涉及年龄范围更大、种族更广泛的图像。


原文链接:https://spectrum.ieee.org/the-human-os/robotics/artificial-intelligence/ai-beats-dermatologists-in-diagnosing-nail-fungus



✄------------------------------------------------

加入机器之心(全职记者/实习生):hr@jiqizhixin.com

投稿或寻求报道:editor@jiqizhixin.com

广告&商务合作:bd@jiqizhixin.com

版权声明:本站内容全部来自于腾讯微信公众号,属第三方自助推荐收录。《使用Faster R-CNN、ResNet诊断皮肤病,深度学习再次超越人类专家》的版权归原作者「机器之心」所有,文章言论观点不代表Lambda在线的观点, Lambda在线不承担任何法律责任。如需删除可联系QQ:516101458

文章来源: 阅读原文

相关阅读

关注机器之心微信公众号

机器之心微信公众号:almosthuman2014

机器之心

手机扫描上方二维码即可关注机器之心微信公众号

机器之心最新文章

精品公众号随机推荐