vlambda博客
学习文章列表

图解Git原理关键概念


Git是那个“爱骂人”的Linux之父Linus Torvalds继Linux内核后奉献给全世界程序员的第二个礼物(不能确定已经逐渐老去的Torvalds能否迸发第三春,第三次给我们一个超大惊喜^_^)。这里再强调一下,Git读作/git/,而不是/dʒit/。

在诞生十余载后(2005年发布第一版),Git毫无争议地成为了程序员版本管理工具的首选,它改变了全世界程序员的代码版本管理和生产协作的模式,极大促进了开源软件运动的发展。 进化到今天的Git已经成为了一个比较复杂的工具,多数程序员都将目光聚焦在如何记住这些命令并用好这些命令上,对这些复杂命令行背后的原理却知之不多,虽然大多数程序员的确不太需要深刻了解Git背后的原理^_^。

关于Git原理的文章在互联网上也呈现出“汗牛充栋”之势,有些文章“蜻蜓点水”,有些文章“事无巨细”,看后似乎都无法让我满意。结合自己对Git原理的学习,我觉得多数人把握住Git运作机制的几个关键概念即可,于是就有了这篇文章,我努力尝试给大家讲清楚。


我就是仓库,我拥有全部

图解Git原理关键概念


我们首先要明确一个Git与先前的版本管理工具(主要是Subversion)的不同。下面是使用Subversion版本管理工具时,程序员进行代码生产以及程序员间围绕代码仓库进行协作的模式:

图解Git原理关键概念

Subversion代码生产和协作模式

众所周知,Subversion是基于中心版本仓库进行版本管理协作的版本管理工具。就像上图中那样,所有开发人员开始生产代码的前提是必须先从中心仓库checkout一份代码拷贝到自己本地的工作目录;而进行版本管理操作或者与他人进行协作的前提也是:中心版本仓库必须始终可用。这有点像以太网的“半双工的集线器(hub)模式”:SVN中心仓库就像集线器本身,每个程序员节点就像连接到集线器上的主机;当一个程序员提交(commit)代码到中心仓库时,其他程序员不能提交,否则会出现冲突;如果中心仓库挂掉了,那么整个版本管理过程也将停止,程序员节点间无法进行协作,这就像集线器(hub)挂掉后,所有连接到hub上的主机节点间的网络也就断开无法相互通信一样。
如果我们使用Git,我们是不需要“集线器”的:

图解Git原理关键概念

Git代码生产和协作模式

如上图所示,Git号称分布式版本管理系统,本质上是没有像Subversion中那个所谓的“中心仓库”的。每个程序员都拥有一个本地Git仓库,而不仅仅是一份代码拷贝,这个仓库就是一个独立的版本管理节点,它拥有程序员进行代码生产、版本管理、与其他程序员协作的全部信息。即便在一台没有网络连接的机器上,程序员也能利用该仓库完成代码生产和版本管理工作。在网络ready的情况下,任意两个Git仓库之间可以进行点对点的协作,这种协作无需中间协调者(中心仓库)参与。


GitHub实现了基于Git网络协作的控制平面

图解Git原理关键概念


Git实现了分布式版本管理系统,每个Git仓库节点都是自治的。诸多Git仓库节点一起形成了一个分布式Git版本管理网络。这样的一个分布式网络存在着与普通分布式系统的类似的问题:如何发现对端节点的Git仓库、如何管理和控制仓库间的访问权限等。如果说Linus的Git本身是这个分布式网络的数据平面工具(实现client/server间的双向数据通信),那么这个分布式网络还缺少一个“控制平面”。

而GitHub恰恰给出了一份Git分布式网络控制平面的实现:托管、发现、控制……。其名称中含有的“Hub”字样让我们想起了上面的“Hub模式”:

图解Git原理关键概念

GitHub:Git分布式网络控制平面的实现

我们看到在GitHub的Git协作模式实践中,引入了“中心仓库”的概念,各个程序员的节点Git仓库源于(clone于)中心仓库。但是它和Subversion的“中心仓库”有着本质的不同,这个仓库只是一个“upstream”库、是一个权威库。它并不是“集线器”,也没有按照“集线器”的那种工作模式进行协作。所有程序员节点的代码生产和版本管理操作完全可以脱离该所谓“中心库”而独立实施。


objects是个筐,什么都往里面装

图解Git原理关键概念


上面都是从“宏观”谈Git的一些与众不同的理念,而Git原理,其实是从这一节才真正开始的^_^。

我们知道:每个Git仓库的所有数据都存储在仓库顶层路径下的.git目录下:

$tree -L 1 -F
.
├── COMMIT_EDITMSG
├── HEAD
├── config
├── description
├── hooks/
├── index
├── info/
├── logs/
├── objects/
└── refs/

5 directories, 5 files

而在这些目录和文件中,又以objects路径下的数据内容最多,也最为重要。在Git的设计中,objects目录就是一个“筐”,Git的核心对象(object)都往里面“装”。

图解Git原理关键概念

Git核心数据对象类型与objects目录

从上图中,我们看到objects中存储的最主要的有三类对象:blob、commit和tree。这时你可能还不知道它们究竟是啥。不过没关系,我们通过一个例子来做一下“对号入座”。

我们在一个 目录下建立git-internal-repo-demo目录,进入该目录,执行下面命令创建一个Git仓库:

➜  /Users/tonybai/test/git/git-internal-repo-demo git:(master) ✗ $git init .
Initialized empty Git repository in /Users/tonybai/Test/git/git-internal-repo-demo/.git/

这是一个处于初始状态的Git仓库,我们看看存储Git仓库数据的.git目录下的结构:

➜  /Users/tonybai/test/git/git-internal-repo-demo git:(master) $tree .git
.git
├── HEAD
├── config
├── description
├── hooks
│   ├── applypatch-msg.sample
│   ├── commit-msg.sample
│   ├── fsmonitor-watchman.sample
│   ├── post-update.sample
│   ├── pre-applypatch.sample
│   ├── pre-commit.sample
│   ├── pre-push.sample
│   ├── pre-rebase.sample
│   ├── pre-receive.sample
│   ├── prepare-commit-msg.sample
│   └── update.sample
├── info
│   └── exclude
├── objects
│   ├── info
│   └── pack
└── refs
    ├── heads
    └── tags

8 directories, 15 files

这个时候,objects这个筐还是空的!我们这就为仓库添点内容:

$mkdir -p cmd/demo

在cmd/demo目录下添加main.go文件,内容如下:

// cmd/demo/main.go
package main

import "fmt"

func main() {
    fmt.Println("hello, git")
}

接下来我们使用git add将cmd/demo目录加入到stage区:

$git add .

$git status
On branch master

No commits yet

Changes to be committed:
  (use "git rm --cached <file>..." to unstage)

    new file:   cmd/demo/main.go

这时我们来看一下objects这个筐是否有变化:

├── objects
│   ├── 3e
│   │   └── 759ef88951df9b9b07077a7ec01f96b8e659b3
│   ├── info
│   └── pack

我们有一个object已经被装入到“筐”中了。我们看到objects目录下是一些以哈希值命名的文件和目录,其中目录由两个字符组成,是每个object hash值的前两个字符。hash值后续的字符串用于命名对应的object文件。在这里我们的object的hash值(实质是sha-1算法)为3e759ef88951df9b9b07077a7ec01f96b8e659b3,于是这个对象就被放入名为3e的目录下,对应的object文件为759ef88951df9b9b07077a7ec01f96b8e659b3。

我们使用Git提供的低级命令查看一下这个object究竟是什么,其中git cat-file -t查看object的类型,git cat-file -p查看object的内容:

$git cat-file -t 3e759ef889
blob

$git cat-file -p 3e759ef889
package main

import "fmt"

func main() {
    fmt.Println("hello, git")
}

我们看到objects这个筐中多了一个blob类型的对象,对象内容就是前面main.go文件中内容。

接下来,我们提交一下这次变更:

$git commit -m"first commit" .
[master (root-commit) 3062e0e] first commit
 1 file changed, 7 insertions(+)
 create mode 100644 cmd/demo/main.go

再来看看.git/objects中的变化:

├── objects
│   ├── 1f
│   │   └── 51fe448aacc69c0f799def9506e61ed3eb60fa
│   ├── 30
│   │   └── 62e0ebad9415b704e96e5cee1542187b7ed571
│   ├── 3d
│   │   └── 2045367ea40c098ec5c7688119d72d97fb09a5
│   ├── 3e
│   │   └── 759ef88951df9b9b07077a7ec01f96b8e659b3
│   ├── 40
│   │   └── 6d08e1159e03ae82bcdbe1ad9f076a04a41e2b
│   ├── info
│   └── pack

我们看到筐里被一下子新塞入4个object。我们分别看看新增的4个object类型和内容都是什么:

$git cat-file -t 1f51fe448a
tree
$git cat-file -p 1f51fe448a
100644 blob 3e759ef88951df9b9b07077a7ec01f96b8e659b3    main.go

$git cat-file -t 3062e0ebad
commit
$git cat-file -p 3062e0ebad
tree 406d08e1159e03ae82bcdbe1ad9f076a04a41e2b
author Tony Bai <[email protected]> 1586243612 +0800
committer Tony Bai <[email protected]> 1586243612 +0800

first commit

$git cat-file -t 3d2045367e
tree
$git cat-file -p 3d2045367e
040000 tree 1f51fe448aacc69c0f799def9506e61ed3eb60fa    demo

$git cat-file -t 406d08e115
tree
$git cat-file -p 406d08e115040000 tree 3d2045367ea40c098ec5c7688119d72d97fb09a5    cmd

这里我们看到了另外两种类型的object被加入“筐”中:commit和tree类型。objects这个筐里目前有了5个object,我们不考虑Git是以何种格式存储这些object的,我们想知道的是这几个object的关系是什么样的。请看下一小节^_^。


每个commit都是一个Git仓库的快照

图解Git原理关键概念


要理清objects“筐”中各object间的关系,就必须要把握住一个关键概念:“每个commit都是Git仓库的一个快照”——以一个commit为入口,我们能将当时objects下面的所有object联系在一起。因此,上面5个object中的那个commit对象就是我们分析各object关系的入口。我们根据上述5个object的内容将这5个object的关系组织为下面这幅示意图:

图解Git原理关键概念

commit、tree、blob对象之间的关系

通过上图我们看到:

  • commit是对象关系图的入口;

  • tree对象用于描述目录结构,每个目录节点都会用一个tree对象表示。目录间、目录文件间的层次关系会在tree对象的内容中体现;

  • 每个commit都会有一个root tree对象;

  • blob对象为tree的叶子节点,它的内容即为文件的内容。


上面仅是一次commit后的关系图,为了更清晰的看到多个commit对象之间关系,我们再来对git repo进行一次变更提交:

我们创建pkg/foo目录:

$mkdir -p pkg/foo

然后创建文件pkg/foo/foo.go,其内容如下:

// pkg/foo/foo.go
package foo

import "fmt"

func Foo() {
    fmt.Println("this is foo package")
}

提交这次变更:

$git add pkg
$git commit -m"add package foo" .
[master 6f7f08b] add package foo
 1 file changed, 7 insertions(+)
 create mode 100644 pkg/foo/foo.go

下面是提交变更后的“筐”内的对象:

$tree objects
objects
├── 1f
│   └── 51fe448aacc69c0f799def9506e61ed3eb60fa
├── 29
│   └── 3ae375dcef1952c88f35dd4d2a1d4576dea8ba
├── 30
│   └── 62e0ebad9415b704e96e5cee1542187b7ed571
├── 3d
│   └── 2045367ea40c098ec5c7688119d72d97fb09a5
├── 3e
│   └── 759ef88951df9b9b07077a7ec01f96b8e659b3
├── 40
│   └── 6d08e1159e03ae82bcdbe1ad9f076a04a41e2b
├── 65
│   └── 5dd3aae645813dc53834ebfa8d19608c4b3905
├── 6e
│   └── e873d9c7ca19c7fe609c9e1a963df8d000282b
├── 6f
│   └── 7f08b14168beb114c3cc099b8dc1c09ccd4739
├── cc
│   └── 9903a33cb99ae02a9cb648bcf4a71815be3474
├── info
└── pack

12 directories, 10 files

object已经多到不便逐一分析了。但我们把握住一点:commit是分析关系的入口。我们通过commit的输出或commit log(git log)可知,新增的commit对象的hash值为6f7f08b141。我们还是以它为入口分析新增object的关系以及它们与之前已存在的object的关系:

图解Git原理关键概念

commit、tree、blob对象之间的关系1

从上图我们看到:

  • Git新创建tree对象对应我们新建的pkg目录以及其子目录;

  • CMD目录下的子目录和文件内容并未改变,因此这次commit所对应的root tree对象(293ae375dc)直接使用了已存在的CMD目录对应的对象(3d2045367e);

  • 新commit对象会将第一个commit对象作为parent,这样多个commit对象之间构成一个单向链表。


上面的两个提交都是新增内容,我们再来提交一个commit,这次我们对已有文件内容做变更:

将cmd/demo/main.go文件内容变更为如下内容:

// cmd/demo/main.go
package main

import (
    "fmt"

    "github.com/bigwhite/foo"
)

func main() {
    fmt.Println("hello, git")
    foo.Foo()
}

提交变更:

$git commit -m"call foo.Foo in main" .
[master 2f14635] call foo.Foo in main
 1 file changed, 6 insertions(+), 1 deletion(-)

和上面的分析方法一样,我们通过最新commit对应的hash值2f146359b4对新对象和现存对象的关系进行分析:

图解Git原理关键概念

commit、tree、blob对象之间的关系2

如上图,第三次变更提交后,我们看到:

  • 由于main.go文件变更,Git重建了main.go blob对象、demo、cmd tree对象

  • 由于pkg目录、其子目录布局、子目录下文件内容没有改变,于是新commit对象对应的root tree对象直接“复用”了上一次commit的pkg tree对象。

  • 新commit对象加入commit对象单向链表,并将上一次的commit对象作为parent。


我们看到沿着最新的commit对象(2f146359b4),我们能获取当前仓库的最新结构布局以及各个blob对象的最新内容,即最新的一个快照!


object是不可变的,默克尔树(Merkle Tree)判断变化

图解Git原理关键概念


从上面的三次变更,我们看到无论哪种对象object,一旦放入到objects这个“筐”就是不可变的(immutable)。即便是第三次commit对main.go进行了修改,git也只是根据main.go的最新内容创建一个新的blob对象,而不是修改或替换掉第一版main.go对应的blob对象。

对应目录的tree object亦是如此。如果某目录下的二级目录发生变化或目录下的文件内容发生改变,Git会新生成一个对应该目录的tree对象,而不是去修改原先已存在的tree对象。

实际上,git tree对象的组织本身就是一棵默克尔树(Merkle Tree)。

默克尔树是一类基于哈希值的二叉树或多叉树,其叶子节点上的值通常为数据块的哈希值,而非叶子节点上的值,是将该节点的所有孩子节点的组合结果的哈希值。默克尔树的特点是,底层数据的任何变动,都会传递到其父亲节点,一直到树根。

图解Git原理关键概念

默克尔树(图片来自网络)

以上图为例:我们自下向上看,D0、D1、D2和D3是叶子节点包含的数据。N0、N1、N2和N3是叶子节点,它们是将数据(也就是D0、D1、D2和D3)进行hash运算后得到的hash值;继续往上看,N4和N5是中间节点,N4是N0和N1经过hash运算得到的哈希值,N5是N2和N3经过hash运算得到的哈希值。(注意,hash值计算方法:把相邻的两个叶子结点合并成一个字符串,然后运算这个字符串的哈希)。最后,Root节点是N4和N5经过hash运算后得到的哈希值,这就是这颗默克尔树的根哈希。当N0包含的数据发生变化时,根据默克尔树的节点hash值形成机制,我们可以快速判断出:N0、N4和root节点会发生变化。

对应Git来说,叶子节点对应的就是每个文件的hash值,tree对象对应的是中间节点。因此,通过默克尔树(Merkle Tree)的特性,我们可以快速判断哪些对象对应的目录或文件发生了变化,应该重新创建对应的object。我们还以上面的第三次commit为例:

图解Git原理关键概念

通过默克尔树(Merkle Tree)的特性判断哪些对象发生变化需要重新创建

如上图所示,第三次commit是因为cmd/demo/main.go内容发生了变化,根据merkle tree特性,我们可以快速判断红色的object会随之发生变化。于是Git会自底向上逐一创建这些新对象:main.go文件对应的blob对象以及demo、cmd以及根节点对应的tree对象。


branch和tag之所以轻量,因为它们都是“指针”

图解Git原理关键概念


使用Subversion时,创建branch或打tag使用的是svn copy命令。svn copy执行的就是真实的文件拷贝,相当于将trunk下的目录和文件copy一份放到branch或tag下面,建立一个trunk的副本,这样的操作绝对是“超重量级”的。如果SVN仓库中的文件数量庞大且size很大,那么svn copy执行起来不仅速度慢,而且还会在svn server上占用较大的磁盘存储空间,因此使用SVN时,打tag和创建branch是要“谨慎”的。

而Git的branch和tag则极为轻量,我们来给上面例子中的仓库创建一个dev分支:

$git branch dev

我们看看.git下有啥变化:

.

└── refs
    ├── heads
    │   ├── dev
    │   └── master
    └── tags

我们看到.git/refs/heads下面多出了一个dev文件,我们查看一下该文件的内容:

$cat refs/heads/dev
2f146359b475909f2fdcdef046af3431c8077282

$git log --oneline

2f14635 (HEAD -> master, dev) call foo.Foo in main
6f7f08b add package foo
3062e0e first commit

对比发现,dev文件中的内容恰是最新的commit对象:2f146359b475909f2fdcdef046af3431c8077282。

我们再来给repo打一个tag:

$git tag v0.0.1

同样,我们来查看一下.git目录下的变化:

└── refs
    ├── heads
    │   ├── dev
    │   └── master
    └── tags
        └── v0.0.1

我们看到在refs/tags下面增加一个名为v0.0.1的文件,查看其内容:

$cat refs/tags/v0.0.1
2f146359b475909f2fdcdef046af3431c8077282

和dev分支文件一样,它的内容也是最新的commit对象:2f146359b475909f2fdcdef046af3431c8077282。

可见,使用git创建分支或tag仅仅是创建了一个指向某个commit对象的“指针”,这与subversion的副本操作相比,简直不能再轻量了。

前面说过,一个commit对象都是一个git仓库的快照,切换到(git checkout xxx)某个branch或tag,就是将本地工作拷贝切换到commit对象所代表的仓库快照的状态。当然也会将commit对象组成的单向链表的head指向该commit对象,这个head即.git/HEAD文件的内容。


小结


到这里,Git原理的几个关键概念就交代完了,再回顾一下:

  • 和Subversion这样的集中式版本管理工具最大的不同就是每个程序员节点都是Git仓库,拥有全部开发、协作所需的全部信息,完全可以脱离“中心节点”;

  • 如果说Git聚焦于数据平面的功能,那么GitHub则是一个基于Git网络协作的控制平面的实现;

  • objects是个筐,什么都往里面装。Git仓库的核心数据都存在.git/objects下面,主要类型包括:blob、tree和commit;

  • 每个commit都是一个Git仓库的快照,记住commit对象是分析对象关系的入口;

  • Git是基于数据内容的hash值做等值判定的,object是不可变的,默克尔树(Merkle Tree)用来快速判断变化;

  • branch和tag因为是“指针”,因此创建、销毁和切换都非常轻量。


文章来源:TonyBai, 。


Kubernetes实战培训


Kubernetes实战培训将于2020年12月25日在深圳开课,3天时间带你系统掌握Kubernetes,学习效果不好可以继续学习。本次培训包括:云原生介绍、微服务;Docker基础、Docker工作原理、镜像、网络、存储、数据卷、安全;Kubernetes架构、核心组件、常用对象、网络、存储、认证、服务发现、调度和服务质量保证、日志、监控、告警、Helm、实践案例等,点击下方图片或者阅读原文链接查看详情。