vlambda博客
学习文章列表

为什么大厂都在用 GO 语言?读透 GO 语言的切片

为什么大厂都在用 GO 语言?读透 GO 语言的切片

作者 | 马超
责编 | 夕颜
封图 | CSDN下载自视觉中国
出品 | CSDN(ID:CSDNnews)

今年3月初,腾讯发布了《腾讯研发大数据报告》,笔者发现GO语言的使用在鹅厂已经上升到了TOP5的位置了。

 

为什么大厂都在用 GO 语言?读透 GO 语言的切片


我们知道腾讯尤其是Docker容器化这一块,是走在各大厂的前列的,尤其是他们的基于GO语言开发的DEVOPS蓝鲸平台,水平相当高。


经笔者实地上手体验,GO语言在并发等方面还是相当优秀的,下面笔者就汇报一下最新的成果。


为什么大厂都在用 GO 语言?读透 GO 语言的切片

GO语言的切片简介



为什么大厂都在用 GO 语言?读透 GO 语言的切片

GO语言的代码解读


1. append函数添加元素


Go语言的内建函数 append() 可以为切片动态添加元素,不过需要注意的是,由于切片本身是变长的,因此在使用 append() 函数为切片动态添加元素时,切片就会自动进行“扩容”,同时新切片的长度也会增加,但是有一点需要注意,append返回的是一个新的切片对象,而不是对原切片进行操作。在下面的代码中我们先定义了一个切片a,并不断通过append方式为其增加元素,并观察切片a的长度及容量变化。


package main
import ("fmt")
func main() {
var a []int //定义一个切片fmt.Printf("len: %d cap: %d pointer: %p\n", len(a), cap(a), a)//此时切片长度和容量都是0,运行结果为len: 0 cap: 0 pointer: 0x0a = append(a, 1) // 追加1个元素fmt.Printf("len: %d cap: %d pointer: %p\n", len(a), cap(a), a)//注意此时a的地址已经发生变化为新的切片了,新切片长度和容量都为1运行结果为:len: 1 cap: 1 pointer: 0xc000072098a = append(a, 2, 3, 4) // 追加多个元素fmt.Printf("len: %d cap: %d pointer: %p\n", len(a), cap(a), a)//注意此时a的地址再次发生变化实际上又生成为新的切片了,新切片长度和容量都为4运行结果为:len: 4 cap: 4 pointer: 0xc000070160a = append(a, 5) // 再追加一个元素fmt.Printf("len: %d cap: %d pointer: %p\n", len(a), cap(a), a)//注意切片扩容策略是倍增方式容量由4变成8,而长度是5运行结果为:len: 4 cap: 4 pointer: 0xc000070160
}


可以观察到切片在扩容时,其容量(cap)的速度规律是以2 倍数进行的。


2.在切片中元素的删除


删除切片中开头的N个元素


使用x = x[N:] 的方式来在切片中删除由第i个元素开始的N个元素

具体代码如下:


package main

import ("fmt")
func main() {var a = []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} //使用原始定义法来声明并初始化一个切片fmt.Println(a) //运行结果为[1 2 3 4 5 6 7 8 9 10]a = a[1:] // 删除第1个元素fmt.Println(a) //删头第1个元素后,运行结果为[2 3 4 5 6 7 8 9 10]a = a[2:] // 删除前2个元素fmt.Println(a) //删头前2个元素后,运行结果为[4 5 6 7 8 9 10]
}


3、深入理解GO语言中的切片


有关切片的代码位置在GOPATH\src\runtime\slice.go,其中对于几个重点函数解读如下:


1.slice 结构定义


首先slice是这样一个结构体,他有一个存放数据的数组,和一个长度len与容量cap构成


type slice struct {
array unsafe.Pointer len int cap int}


2.创建切片的makeslice函数


而创建切片的函数makeslice如下,可以看到函数会对于内存进行预分配,如果成功再正式分配内存,他建切片的makeslice函数源码及注释如下:


func makeslice(et *_type, len, cap int) slice {
mem, overflow := math.MulUintptr(et.size, uintptr(cap))//此函数计算et.size也就是每个元素所占空间的大小,并与容量cap相乘,其中mem既为所需要最大内存,overflow代表是否会造成溢出if overflow || mem > maxAlloc || len < 0 || len > cap {//判断是否有溢出,长度为负数或者长度比容量大的情况,如存在 直接panic// NOTE: Produce a 'len out of range' error instead of a// 'cap out of range' error when someone does make([]T, bignumber).// 'cap out of range' is true too, but since the cap is only being// supplied implicitly, saying len is clearer.// See golang.org/issue/4085.mem, overflow := math.MulUintptr(et.size, uintptr(len))if overflow || mem > maxAlloc || len < 0 {panicmakeslicelen()}panicmakeslicecap()}return mallocgc(mem, et, true)// 如果错误检查成功,则分配内存,注意slice对象会被GC所自动清除。
}


3.扩容函数growslice


通过阅读growslice的源码可以看在这个函数当中,扩容的规则是在长度小于1024时按照一直采用的是翻倍的方式进行扩容,在大于1024后,每次扩容至原容量的1.25倍,新容量计算完成后对于内存进行预分配,这点也makeslice的想法一致,接下再将老slice中的数据通过memmove(p, old.array, lenmem)的方式拷贝至新的slice。growlice函数源码及注释如下:


func growslice(et *_type, old slice, cap int) slice {

// 单纯地扩容,不写数据 if et.size == 0 { if cap < old.cap { panic(errorString("growslice: cap out of range")) } // append should not create a slice with nil pointer but non-zero len. // We assume that append doesn't need to preserve old.array in this case. return slice{unsafe.Pointer(&zerobase), old.len, cap} }// 扩容规则 1.新的容量大于旧的2倍,直接扩容至新的容量// 2.新的容量不大于旧的2倍,当旧的长度小于1024时,扩容至旧的2倍,否则扩容至旧的1.25倍 newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { if old.len < 1024 { newcap = doublecap } else { for newcap < cap { newcap += newcap / 4 } } }
// 跟据切片类型和容量计算要分配内存的大小
var overflow boolvar lenmem, newlenmem, capmem uintptr switch {case et.size == 1:lenmem = uintptr(old.len)newlenmem = uintptr(cap)capmem = roundupsize(uintptr(newcap))overflow = uintptr(newcap) > maxAllocnewcap = int(capmem)case et.size == sys.PtrSize:lenmem = uintptr(old.len) * sys.PtrSizenewlenmem = uintptr(cap) * sys.PtrSizecapmem = roundupsize(uintptr(newcap) * sys.PtrSize)overflow = uintptr(newcap) > maxAlloc/sys.PtrSizenewcap = int(capmem / sys.PtrSize)case isPowerOfTwo(et.size):var shift uintptrif sys.PtrSize == 8 {// Mask shift for better code generation.shift = uintptr(sys.Ctz64(uint64(et.size))) & 63} else {shift = uintptr(sys.Ctz32(uint32(et.size))) & 31}lenmem = uintptr(old.len) << shiftnewlenmem = uintptr(cap) << shiftcapmem = roundupsize(uintptr(newcap) << shift)overflow = uintptr(newcap) > (maxAlloc >> shift)newcap = int(capmem >> shift)default:lenmem = uintptr(old.len) * et.sizenewlenmem = uintptr(cap) * et.sizecapmem, overflow = math.MulUintptr(et.size, uintptr(newcap))capmem = roundupsize(capmem)newcap = int(capmem / et.size)}// 异常情况,旧的容量比新的容量还大或者新的容量超过限制了 if cap < old.cap || uintptr(newcap) > maxSliceCap(et.size) { panic(errorString("growslice: cap out of range")) }
var p unsafe.Pointer if et.kind&kindNoPointers != 0 {
// 为新的切片开辟容量为capmem的地址空间 p = mallocgc(capmem, nil, false)// 将旧切片的数据搬到新切片开辟的地址中 memmove(p, old.array, lenmem) // The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length). // Only clear the part that will not be overwritten.// 清理下新切片中剩余地址,不能存放堆栈指针
// memclrNoHeapPointers clears n bytes starting at ptr.//// Usually you should use typedmemclr. memclrNoHeapPointers should be// used only when the caller knows that *ptr contains no heap pointers// because either://// 1. *ptr is initialized memory and its type is pointer-free.//// 2. *ptr is uninitialized memory (e.g., memory that's being reused// for a new allocation) and hence contains only "junk". memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem) } else { // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory. p = mallocgc(capmem, et, true) if !writeBarrier.enabled { memmove(p, old.array, lenmem) } else { for i := uintptr(0); i < lenmem; i += et.size { typedmemmove(et, add(p, i), add(old.array, i)) } } }
return slice{p, old.len, newcap}}


为什么大厂都在用 GO 语言?读透 GO 语言的切片

GO语言切片的相关结论


所以通过阅读以上源代码我们也可以知道,有以下两点结论:


  1. append方式为数据增加元素时,如果触发切片进行扩容,则肯定是新生成了一个切片对象,并且涉及内存操作,因此append操作一定要小心。

  2. 建议尽量通过make函数来声明一个切片,并在初始时尽量设定好一个合理的容量值,避免切片频繁扩容带来不必要的开销。


原文链接:

https://blog.csdn.net/BEYONDMA/article/details/104799500


【END】

今日福利

遇见大咖


同样作为“百万人学 AI”的重要组成部分,2020 AIProCon 开发者万人大会将于 7 月 3 日至 4 日通过线上直播形式,让开发者们一站式学习了解当下 AI 的前沿技术研究、核心技术与应用以及企业案例的实践经验,同时还可以在线参加精彩多样的开发者沙龙与编程项目。参与前瞻系列活动、在线直播互动,不仅可以与上万名开发者们一起交流,还有机会赢取直播专属好礼,与技术大咖连麦。


门票限量大放送!今日起点击阅读原文报名「2020 AI开发者万人大会」,使用优惠码“AIP211”,即可免费获得价值299元的大会在线直播门票一张。限量100张,先到先得!快来动动手指,免费获取入会资格吧!


点击阅读原文,直达大会官网。