共享锁、排他锁、互斥锁、悲观锁、乐观锁、行锁、表锁、页面锁、不可重复读、丢失修改、读脏数据
优质文章,第一时间送达
blog.csdn.net/weixin_36634753/article/details/90815755
共享锁(S锁): 又称为读锁,可以查看但无法修改和删除的一种数据锁。如果事务T对数据A加上共享锁后,则其他事务只能对A再加共享锁,不能加排它锁。获准共享锁的事务只能读数据,不能修改数据。 共享锁下其它用户可以并发读取,查询数据。但不能修改,增加,删除数据。资源共享.
排它锁(X锁): 又称为写锁、独占锁,若事务T对数据对象A加上X锁,则只允许T读取和修改A,其他任何事务都不能再对A加任何类型的锁,直到T释放A上的锁。这就保证了其他事务在T释放A上的锁之前不能再读取和修改A
互斥锁: 在编程中,引入了对象互斥锁的概念,来保证共享数据操作的完整性。每个对象都对应于一个可称为" 互斥锁" 的标记,这个标记用来保证在任一时刻,只能有一个线程访问该对象。
悲观锁、乐观锁:
悲观锁: 总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。再比如Java里面的同步原语synchronized关键字的实现也是悲观锁。
乐观锁: 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。
参考:www.cnblogs.com/qjjazry/p/6581568.html
行级锁: 行级锁是 MySQL 中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突,其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁和排他锁。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
表级锁: 表级锁是 MySQL 中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分 MySQL 引擎支持。最常使用的 MyISAM 与 InnoDB 都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁: 页级锁是 MySQL 中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。因此,采取了折衷的页级锁,一次锁定相邻的一组记录。BDB 支持页级锁。开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。
丢失修改: 指事务1和事务2同时读入相同的数据并进行修改,事务2提交的结果破坏了事务1提交的结果,导致事务1进行的修改丢失。
不可重复读: 一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!
读脏数据: 事务T1修改某一数据,并将其写回磁盘,事务T2读取同一数据后,T1由于某种原因被撤消,这时T1已修改过的数据恢复原值,T2读到的数据就与数据库中的数据不一致,则T2读到的数据就为"脏"数据,即不正确的数据。
死锁: 两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程
死锁四个产生条件:
1)互斥条件: 指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。
2)请求和保持条件: 指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。
3)不剥夺条件: 指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。
4)环路等待条件: 指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合{P0,P1,P2,···,Pn}中的P0正在等待一个P1占用的资源;P1正在等待P2占用的资源,……,Pn正在等待已被P0占用的资源。
预防死锁打破上述之一的条件。
有热门推荐👇
点击阅读原文,前往学习SpringCloud实战项目