【RVM分类】基于麻雀搜索算法优化相关向量机实现数据分类附matlab代码
1 简介
目前常用的一些基本的故障诊断,故障预测方法都将大样本数据作为基础,但在实际问题中常常能得到的故障数据都属于小样本类型.传统的故障诊断,故障预测方法已不适于用来解决小样本类型的故障问题.相关向量机(Relevance Vector Machine,简称RVM)是新提出的以支持向量机(Support Vector Machine,简称SVM)为基础的模型,该模型更适应于解决小样本问题.已经被应用于语音及图像处理,医学诊断,模式分类等很多领域.
2 部分代码
%_________________________________________________________________________%麻雀优化算法 %%_________________________________________________________________________%function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)ST = 0.6;%预警值PD = 0.7;%发现者的比列,剩下的是加入者SD = 0.2;%意识到有危险麻雀的比重PDNumber = pop*PD; %发现者数量SDNumber = pop - pop*PD;%意识到有危险麻雀数量== 1)ub = ub.*ones(1,dim);lb = lb.*ones(1,dim);end%种群初始化X0=initialization(pop,dim,ub,lb);X = X0;%计算初始适应度值fitness = zeros(1,pop);for i = 1:pop= fobj(X(i,:));endindex]= sort(fitness);%排序BestF = fitness(1);WorstF = fitness(end);GBestF = fitness(1);%全局最优适应度值for i = 1:pop:) = X0(index(i),:);endcurve=zeros(1,Max_iter);GBestX = X(1,:);%全局最优位置X_new = X;for i = 1: Max_iterBestF = fitness(1);WorstF = fitness(end);R2 = rand(1);for j = 1:PDNumberif(R2<ST):) = X(j,:).*exp(-j/(rand(1)*Max_iter));else:) = X(j,:) + randn()*ones(1,dim);endendfor j = PDNumber+1:popif(j>(pop/2))- PDNumber)/2 + PDNumber):)= randn().*exp((X(end,:) - X(j,:))/j^2);else%产生-1,1的随机数A = ones(1,dim);for a = 1:dimif(rand()>0.5)= -1;endendAA = A'*inv(A*A');:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';endendTemp = randperm(pop);SDchooseIndex = Temp(1:SDNumber);for j = 1:SDNumberif(fitness(SDchooseIndex(j))>BestF):) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));== BestF)K = 2*rand() -1;:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));endend%边界控制for j = 1:popfor a = 1: dimif(X_new(j,a)>ub)=ub(a);endif(X_new(j,a)<lb)=lb(a);endendend%更新位置for j=1:pop= fobj(X_new(j,:));endfor j = 1:pop< GBestF)GBestF = fitness_new(j);GBestX = X_new(j,:);endendX = X_new;fitness = fitness_new;%排序更新index]= sort(fitness);%排序BestF = fitness(1);WorstF = fitness(end);for j = 1:pop:) = X(index(j),:);end= GBestF;endBest_pos =GBestX;Best_score = curve(end);end
3 仿真结果
4 参考文献
[1]马晨佩, 李明辉, 巩强令,等. 基于麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J]. 科学技术与工程, 2021, 21(10):5.
