Pravega Flink connector 的过去、现在和未来
摘要:本文整理自戴尔科技集团软件工程师周煜敏在 Flink Forward Asia 2020 分享的议题《Pravega Flink Connector 的过去、现在和未来》,文章内容为:
-
Pravega 以及 Pravega connector 简介 -
Pravega connector 的过去 -
回顾 Flink 1.11 高阶特性心得分享 -
未来展望 -
Pravega 创客大赛介绍
一、Pravega 以及 Pravega connector 简介
-
中间部分是一个 Pravega 的集群 ,它整体是以 stream 抽象的系统。stream 可以认为是类比 Kafka 的 topic。同样,Pravega 的 Segment 可以类比 Kafka 的 Partition,作为数据分区的概念,同时提供动态伸缩的功能。 Segment 存储二进制数据数据流,并且根据数据流量的大小,发生 merge 或者 split 的操作,以释放或者集中资源。此时 Segment 会进行 seal 操作禁止新数据写入,然后由新建的 Segment 进行新数据的接收。
-
图片左侧是数据写入的场景,支持 append only 的写入。用户可以对于每一个 event 指定 Routing key 来决定 Segment 的归属。这一点可以类比 Kafka Partitioner。单一的 Routing key 上的数据具有保序性,确保读出的顺序与写入相同。
-
图片右侧是数据读取的场景,多个 reader 会有一个 Reader Group 进行管控。Reader Group 控制着 reader 之间的负载均衡的,来保证所有的 Segment 能在 reader 之间均匀分布。同时也提供 Checkpoint 机制形成一致的 stream 切分来保证数据的故障恢复。对于 "读",我们支持批和流两种语义。对于流的场景,我们支持尾读;对于批的场景,我们会更多的考虑高并发来达到高吞吐。
二、Pravega Flink connector 的过去
1. Pravega 发展历程
-
connector 从 2017 年开始成为独立的 Github 项目。2017 年,我们基于 Flink 1.3 版本进行开发,当时有包括 Stephan Ewen 在内的 Flink PMC 成员加入,合作构建了最基础的 Source / Sink function,支持最基础的读写,同时也包括 Pravega Checkpoint 的集成,这点会在后面进行介绍。
-
2018 年最重要的一个亮点功能就是端到端的精确一次性语义支持。当时团队和 Flink 社区有非常多的讨论,Pravega 首先支持了事务性写客户端的特性,社区在此基础上合作,以 Sink function 为基础,通过一套两阶段提交的语义实现了基于 checkpoint 的分布式事务功能。后来,Flink 也进一步抽象出了两阶段提交的 API,也就是为大家熟知的 TwoPhaseCommitSinkFunction 接口,并且也被 Kafka connector 采用。社区有博客来专门介绍这一接口,以及端到端的一次性语义。
-
2019 年更多的是 connector 对其它 API 的一些补完,包括对批的读取以及 Table API 都有了支持。
-
2020 年的主要关注点是对 Flink 1.11 的集成,其中的重点是 FLIP-27 以及 FLIP-95 的新特性集成。
2. Checkpoint 集成实现
-
扩缩容以及动态的平衡支持。当 Partition 进行调整的时候,或者说对 Pravega 而言,在 Partition 动态扩容和缩容的时候,如何进行 Merge 一致性的保证。
-
还有一点就是 Task 需要维护一个 offset 的信息,整个设计会与 Kafka 的内部抽象 offset 耦合。
三、回顾 Flink 1.11 高阶特性心得分享
1. FLIP-95 集成
■ 1.1 Pravega 旧的 Table API
-
以 update mode 和 append 去进行区分批和流,而且批流的数据这样的区分并不直观。
-
配置件也非常的冗长和复杂,读取的 Stream 需要通过 connector.reader.stream-info.0 这样非常长的配置键来配置。
-
在代码层面,和 DataStream API 也有非常多的耦合难以维护。
■ 1.2 Pravega 全新 Table API
2. Flink-18641 解决过程心得分享
-
首先会自己去逐步断点调试,通过查看 error 的报错日志,分析相关的 Pravega 以及 Flink 的源码,确定它是 Flink CheckpointCoordinator 相关的一些问题; -
然后我们也查看了社区的一些提交记录,发现 Flink 1.10 之后, CheckpointCoordinator 线程模型,由原来锁控制的模型变成了 Mailbox 模型。这个模型导致了我们原来同步串型化执行的一些逻辑,错误的被并行化运行了,于是导致该错误; -
进一步看了这一个改动的 pull request,也通过邮件和相关的一些 Committer 取得了联系。最后在 dev 邮件列表上确认问题,并且开了这个 JIRA ticket。
-
在邮件列表和 JIRA 中搜索是否有其他人已经提出了类似问题; -
完整的描述问题,提供详细的版本信息,报错日志和重现步骤; -
得到社区成员反馈之后,可以进一步会议沟通商讨解决方案; -
在非中文环境需要使用英语。
四、未来展望
-
在未来比较大的工作就是 Pravega schema registry 集成。Pravega schema registry 提供了对 Pravega stream 的元数据的管理,包括数据 schema 以及序列化方式,并进行存储。这个功能伴随着 Pravega 0.8 版本发布了该项目的第一个开源版本。我们将在之后的 0.10 版本中基于这一项目实现 Pravega 的Catalog,使得 Flink table API 的使用更加简单; -
其次,我们也时刻关注 Flink 社区的新动向,对于社区的新版本、新功能也会积极集成,目前的计划包括 FLIP-143 和 FLIP-129; -
社区也在逐步完成基于 docker 容器的新的 Test Framework 的转换,我们也在关注并进行集成。