Redis高级客户端Lettuce详解
前提
Lettuce
是一个Redis
的Java
驱动包,初识她的时候是使用RedisTemplate
的时候遇到点问题Debug
到底层的一些源码,发现spring-data-redis
的驱动包在某个版本之后替换为Lettuce
。Lettuce
翻译为生菜,没错,就是吃的那种生菜,所以它的Logo
长这样:
既然能被Spring
生态所认可,Lettuce
想必有过人之处,于是笔者花时间阅读她的官方文档,整理测试示例,写下这篇文章。编写本文时所使用的版本为Lettuce 5.1.8.RELEASE
,SpringBoot 2.1.8.RELEASE
,JDK [8,11]
。
Lettuce简介
Lettuce
是一个高性能基于Java
编写的Redis
驱动框架,底层集成了Project Reactor
提供天然的反应式编程,通信框架集成了Netty
使用了非阻塞IO
,5.x
版本之后融合了JDK1.8
的异步编程特性,在保证高性能的同时提供了十分丰富易用的API
,5.1
版本的新特性如下:
支持
Redis
的新增命令ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX
。支持通过
Brave
模块跟踪Redis
命令执行。支持
Redis Streams
。支持异步的主从连接。
支持异步连接池。
新增命令最多执行一次模式(禁止自动重连)。
全局命令超时设置(对异步和反应式命令也有效)。
......等等
注意一点:Redis
的版本至少需要2.6
,当然越高越好,API
的兼容性比较强大。
只需要引入单个依赖就可以开始愉快地使用Lettuce
:
Maven
<dependency>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
<version>5.1.8.RELEASE</version>
</dependency>
Gradle
dependencies {
compile 'io.lettuce:lettuce-core:5.1.8.RELEASE'
}
连接Redis
单机、哨兵、集群模式下连接Redis
需要一个统一的标准去表示连接的细节信息,在Lettuce
中这个统一的标准是RedisURI
。可以通过三种方式构造一个RedisURI
实例:
定制的字符串
URI
语法:
RedisURI uri = RedisURI.create("redis://localhost/");
使用建造器(
RedisURI.Builder
):
RedisURI uri = RedisURI.builder().withHost("localhost").withPort(6379).build();
直接通过构造函数实例化:
RedisURI uri = new RedisURI("localhost", 6379, 60, TimeUnit.SECONDS);
定制的连接URI语法
单机(前缀为
redis://
)
格式:redis://[password@]host[:port][/databaseNumber][?[timeout=timeout[d|h|m|s|ms|us|ns]]
完整:redis://[email protected]:6379/0?timeout=10s
简单:redis://localhost
单机并且使用
SSL
(前缀为rediss://
) <== 注意后面多了个s
格式:rediss://[password@]host[:port][/databaseNumber][?[timeout=timeout[d|h|m|s|ms|us|ns]]
完整:rediss://[email protected]:6379/0?timeout=10s
简单:rediss://localhost
单机
Unix Domain Sockets
模式(前缀为redis-socket://
)
格式:redis-socket://path[?[timeout=timeout[d|h|m|s|ms|us|ns]][&_database=database_]]
完整:redis-socket:///tmp/redis?timeout=10s&_database=0
哨兵(前缀为
redis-sentinel://
)
格式:redis-sentinel://[password@]host[:port][,host2[:port2]][/databaseNumber][?[timeout=timeout[d|h|m|s|ms|us|ns]]#sentinelMasterId
完整:redis-sentinel://[email protected]:6379,127.0.0.1:6380/0?timeout=10s#mymaster
超时时间单位:
d 天
h 小时
m 分钟
s 秒钟
ms 毫秒
us 微秒
ns 纳秒
个人建议使用RedisURI
提供的建造器,毕竟定制的URI
虽然简洁,但是比较容易出现人为错误。鉴于笔者没有SSL
和Unix Domain Socket
的使用场景,下面不对这两种连接方式进行列举。
基本使用
Lettuce
使用的时候依赖于四个主要组件:
RedisURI
:连接信息。RedisClient
:Redis
客户端,特殊地,集群连接有一个定制的RedisClusterClient
。Connection
:Redis
连接,主要是StatefulConnection
或者StatefulRedisConnection
的子类,连接的类型主要由连接的具体方式(单机、哨兵、集群、订阅发布等等)选定,比较重要。RedisCommands
:Redis
命令API
接口,基本上覆盖了Redis
发行版本的所有命令,提供了同步(sync
)、异步(async
)、反应式(reative
)的调用方式,对于使用者而言,会经常跟RedisCommands
系列接口打交道。
一个基本使用例子如下:
@Test
public void testSetGet() throws Exception {
RedisURI redisUri = RedisURI.builder() // <1> 创建单机连接的连接信息
.withHost("localhost")
.withPort(6379)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
RedisClient redisClient = RedisClient.create(redisUri); // <2> 创建客户端
StatefulRedisConnection<String, String> connection = redisClient.connect(); // <3> 创建线程安全的连接
RedisCommands<String, String> redisCommands = connection.sync(); // <4> 创建同步命令
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
String result = redisCommands.set("name", "throwable", setArgs);
Assertions.assertThat(result).isEqualToIgnoringCase("OK");
result = redisCommands.get("name");
Assertions.assertThat(result).isEqualTo("throwable");
// ... 其他操作
connection.close(); // <5> 关闭连接
redisClient.shutdown(); // <6> 关闭客户端
}
注意:
<5>:关闭连接一般在应用程序停止之前操作,一个应用程序中的一个
Redis
驱动实例不需要太多的连接(一般情况下只需要一个连接实例就可以,如果有多个连接的需要可以考虑使用连接池,其实Redis
目前处理命令的模块是单线程,在客户端多个连接多线程调用理论上没有效果)。<6>:关闭客户端一般应用程序停止之前操作,如果条件允许的话,基于后开先闭原则,客户端关闭应该在连接关闭之后操作。
API
Lettuce
主要提供三种API
:
同步(
sync
):RedisCommands
。异步(
async
):RedisAsyncCommands
。反应式(
reactive
):RedisReactiveCommands
。
先准备好一个单机Redis
连接备用:
private static StatefulRedisConnection<String, String> CONNECTION;
private static RedisClient CLIENT;
@BeforeClass
public static void beforeClass() {
RedisURI redisUri = RedisURI.builder()
.withHost("localhost")
.withPort(6379)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
CLIENT = RedisClient.create(redisUri);
CONNECTION = CLIENT.connect();
}
@AfterClass
public static void afterClass() throws Exception {
CONNECTION.close();
CLIENT.shutdown();
}
Redis
命令API
的具体实现可以直接从StatefulRedisConnection
实例获取,见其接口定义:
public interface StatefulRedisConnection<K, V> extends StatefulConnection<K, V> {
boolean isMulti();
RedisCommands<K, V> sync();
RedisAsyncCommands<K, V> async();
RedisReactiveCommands<K, V> reactive();
}
值得注意的是,在不指定编码解码器RedisCodec
的前提下,RedisClient
创建的StatefulRedisConnection
实例一般是泛型实例StatefulRedisConnection<String,String>
,也就是所有命令API
的KEY
和VALUE
都是String
类型,这种使用方式能满足大部分的使用场景。当然,必要的时候可以定制编码解码器RedisCodec<K,V>
。
同步API
先构建RedisCommands
实例:
private static RedisCommands<String, String> COMMAND;
@BeforeClass
public static void beforeClass() {
COMMAND = CONNECTION.sync();
}
基本使用:
@Test
public void testSyncPing() throws Exception {
String pong = COMMAND.ping();
Assertions.assertThat(pong).isEqualToIgnoringCase("PONG");
}
@Test
public void testSyncSetAndGet() throws Exception {
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
COMMAND.set("name", "throwable", setArgs);
String value = COMMAND.get("name");
log.info("Get value: {}", value);
}
// Get value: throwable
同步API
在所有命令调用之后会立即返回结果。如果熟悉Jedis
的话,RedisCommands
的用法其实和它相差不大。
异步API
先构建RedisAsyncCommands
实例:
private static RedisAsyncCommands<String, String> ASYNC_COMMAND;
@BeforeClass
public static void beforeClass() {
ASYNC_COMMAND = CONNECTION.async();
}
基本使用:
@Test
public void testAsyncPing() throws Exception {
RedisFuture<String> redisFuture = ASYNC_COMMAND.ping();
log.info("Ping result:{}", redisFuture.get());
}
// Ping result:PONG
RedisAsyncCommands
所有方法执行返回结果都是RedisFuture
实例,而RedisFuture
接口的定义如下:
public interface RedisFuture<V> extends CompletionStage<V>, Future<V> {
String getError();
boolean await(long timeout, TimeUnit unit) throws InterruptedException;
}
也就是,RedisFuture
可以无缝使用Future
或者JDK
1.8中引入的CompletableFuture
提供的方法。举个例子:
@Test
public void testAsyncSetAndGet1() throws Exception {
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
RedisFuture<String> future = ASYNC_COMMAND.set("name", "throwable", setArgs);
// CompletableFuture#thenAccept()
future.thenAccept(value -> log.info("Set命令返回:{}", value));
// Future#get()
future.get();
}
// Set命令返回:OK
@Test
public void testAsyncSetAndGet2() throws Exception {
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
CompletableFuture<Void> result =
(CompletableFuture<Void>) ASYNC_COMMAND.set("name", "throwable", setArgs)
.thenAcceptBoth(ASYNC_COMMAND.get("name"),
(s, g) -> {
log.info("Set命令返回:{}", s);
log.info("Get命令返回:{}", g);
});
result.get();
}
// Set命令返回:OK
// Get命令返回:throwable
如果能熟练使用CompletableFuture
和函数式编程技巧,可以组合多个RedisFuture
完成一些列复杂的操作。
反应式API
Lettuce
引入的反应式编程框架是Project Reactor,如果没有反应式编程经验可以先自行了解一下Project Reactor
。
构建RedisReactiveCommands
实例:
private static RedisReactiveCommands<String, String> REACTIVE_COMMAND;
@BeforeClass
public static void beforeClass() {
REACTIVE_COMMAND = CONNECTION.reactive();
}
根据Project Reactor
,RedisReactiveCommands
的方法如果返回的结果只包含0或1个元素,那么返回值类型是Mono
,如果返回的结果包含0到N(N大于0)个元素,那么返回值是Flux
。举个例子:
@Test
public void testReactivePing() throws Exception {
Mono<String> ping = REACTIVE_COMMAND.ping();
ping.subscribe(v -> log.info("Ping result:{}", v));
Thread.sleep(1000);
}
// Ping result:PONG
@Test
public void testReactiveSetAndGet() throws Exception {
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
REACTIVE_COMMAND.set("name", "throwable", setArgs).block();
REACTIVE_COMMAND.get("name").subscribe(value -> log.info("Get命令返回:{}", value));
Thread.sleep(1000);
}
// Get命令返回:throwable
@Test
public void testReactiveSet() throws Exception {
REACTIVE_COMMAND.sadd("food", "bread", "meat", "fish").block();
Flux<String> flux = REACTIVE_COMMAND.smembers("food");
flux.subscribe(log::info);
REACTIVE_COMMAND.srem("food", "bread", "meat", "fish").block();
Thread.sleep(1000);
}
// meat
// bread
// fish
举个更加复杂的例子,包含了事务、函数转换等:
@Test
public void testReactiveFunctional() throws Exception {
REACTIVE_COMMAND.multi().doOnSuccess(r -> {
REACTIVE_COMMAND.set("counter", "1").doOnNext(log::info).subscribe();
REACTIVE_COMMAND.incr("counter").doOnNext(c -> log.info(String.valueOf(c))).subscribe();
}).flatMap(s -> REACTIVE_COMMAND.exec())
.doOnNext(transactionResult -> log.info("Discarded:{}", transactionResult.wasDiscarded()))
.subscribe();
Thread.sleep(1000);
}
// OK
// 2
// Discarded:false
这个方法开启一个事务,先把counter
设置为1,再将counter
自增1。
发布和订阅
非集群模式下的发布订阅依赖于定制的连接StatefulRedisPubSubConnection
,集群模式下的发布订阅依赖于定制的连接StatefulRedisClusterPubSubConnection
,两者分别来源于RedisClient#connectPubSub()
系列方法和RedisClusterClient#connectPubSub()
:
非集群模式:
// 可能是单机、普通主从、哨兵等非集群模式的客户端
RedisClient client = ...
StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub();
connection.addListener(new RedisPubSubListener<String, String>() { ... });
// 同步命令
RedisPubSubCommands<String, String> sync = connection.sync();
sync.subscribe("channel");
// 异步命令
RedisPubSubAsyncCommands<String, String> async = connection.async();
RedisFuture<Void> future = async.subscribe("channel");
// 反应式命令
RedisPubSubReactiveCommands<String, String> reactive = connection.reactive();
reactive.subscribe("channel").subscribe();
reactive.observeChannels().doOnNext(patternMessage -> {...}).subscribe()
集群模式:
// 使用方式其实和非集群模式基本一致
RedisClusterClient clusterClient = ...
StatefulRedisClusterPubSubConnection<String, String> connection = clusterClient.connectPubSub();
connection.addListener(new RedisPubSubListener<String, String>() { ... });
RedisPubSubCommands<String, String> sync = connection.sync();
sync.subscribe("channel");
// ...
这里用单机同步命令的模式举一个Redis
键空间通知(Redis Keyspace Notifications)的例子:
@Test
public void testSyncKeyspaceNotification() throws Exception {
RedisURI redisUri = RedisURI.builder()
.withHost("localhost")
.withPort(6379)
// 注意这里只能是0号库
.withDatabase(0)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
RedisClient redisClient = RedisClient.create(redisUri);
StatefulRedisConnection<String, String> redisConnection = redisClient.connect();
RedisCommands<String, String> redisCommands = redisConnection.sync();
// 只接收键过期的事件
redisCommands.configSet("notify-keyspace-events", "Ex");
StatefulRedisPubSubConnection<String, String> connection = redisClient.connectPubSub();
connection.addListener(new RedisPubSubAdapter<>() {
@Override
public void psubscribed(String pattern, long count) {
log.info("pattern:{},count:{}", pattern, count);
}
@Override
public void message(String pattern, String channel, String message) {
log.info("pattern:{},channel:{},message:{}", pattern, channel, message);
}
});
RedisPubSubCommands<String, String> commands = connection.sync();
commands.psubscribe("__keyevent@0__:expired");
redisCommands.setex("name", 2, "throwable");
Thread.sleep(10000);
redisConnection.close();
connection.close();
redisClient.shutdown();
}
// pattern:__keyevent@0__:expired,count:1
// pattern:__keyevent@0__:expired,channel:__keyevent@0__:expired,message:name
实际上,在实现RedisPubSubListener
的时候可以单独抽离,尽量不要设计成匿名内部类的形式。
事务和批量命令执行
事务相关的命令就是WATCH
、UNWATCH
、EXEC
、MULTI
和DISCARD
,在RedisCommands
系列接口中有对应的方法。举个例子:
// 同步模式
@Test
public void testSyncMulti() throws Exception {
COMMAND.multi();
COMMAND.setex("name-1", 2, "throwable");
COMMAND.setex("name-2", 2, "doge");
TransactionResult result = COMMAND.exec();
int index = 0;
for (Object r : result) {
log.info("Result-{}:{}", index, r);
index++;
}
}
// Result-0:OK
// Result-1:OK
Redis
的Pipeline
也就是管道机制可以理解为把多个命令打包在一次请求发送到Redis
服务端,然后Redis
服务端把所有的响应结果打包好一次性返回,从而节省不必要的网络资源(最主要是减少网络请求次数)。Redis
对于Pipeline
机制如何实现并没有明确的规定,也没有提供特殊的命令支持Pipeline
机制。Jedis
中底层采用BIO
(阻塞IO)通讯,所以它的做法是客户端缓存将要发送的命令,最后需要触发然后同步发送一个巨大的命令列表包,再接收和解析一个巨大的响应列表包。Pipeline
在Lettuce
中对使用者是透明的,由于底层的通讯框架是Netty
,所以网络通讯层面的优化Lettuce
不需要过多干预,换言之可以这样理解:Netty
帮Lettuce
从底层实现了Redis
的Pipeline
机制。但是,Lettuce
的异步API
也提供了手动Flush
的方法:
@Test
public void testAsyncManualFlush() {
// 取消自动flush
ASYNC_COMMAND.setAutoFlushCommands(false);
List<RedisFuture<?>> redisFutures = Lists.newArrayList();
int count = 5000;
for (int i = 0; i < count; i++) {
String key = "key-" + (i + 1);
String value = "value-" + (i + 1);
redisFutures.add(ASYNC_COMMAND.set(key, value));
redisFutures.add(ASYNC_COMMAND.expire(key, 2));
}
long start = System.currentTimeMillis();
ASYNC_COMMAND.flushCommands();
boolean result = LettuceFutures.awaitAll(10, TimeUnit.SECONDS, redisFutures.toArray(new RedisFuture[0]));
Assertions.assertThat(result).isTrue();
log.info("Lettuce cost:{} ms", System.currentTimeMillis() - start);
}
// Lettuce cost:1302 ms
上面只是从文档看到的一些理论术语,但是现实是骨感的,对比了下Jedis
的Pipeline
提供的方法,发现了Jedis
的Pipeline
执行耗时比较低:
@Test
public void testJedisPipeline() throws Exception {
Jedis jedis = new Jedis();
Pipeline pipeline = jedis.pipelined();
int count = 5000;
for (int i = 0; i < count; i++) {
String key = "key-" + (i + 1);
String value = "value-" + (i + 1);
pipeline.set(key, value);
pipeline.expire(key, 2);
}
long start = System.currentTimeMillis();
pipeline.syncAndReturnAll();
log.info("Jedis cost:{} ms", System.currentTimeMillis() - start);
}
// Jedis cost:9 ms
个人猜测Lettuce
可能底层并非合并所有命令一次发送(甚至可能是单条发送),具体可能需要抓包才能定位。依此来看,如果真的有大量执行Redis
命令的场景,不妨可以使用Jedis
的Pipeline
。
注意:由上面的测试推断RedisTemplate
的executePipelined()
方法是假的Pipeline
执行方法,使用RedisTemplate
的时候请务必注意这一点。
Lua脚本执行
Lettuce
中执行Redis
的Lua
命令的同步接口如下:
public interface RedisScriptingCommands<K, V> {
<T> T eval(String var1, ScriptOutputType var2, K... var3);
<T> T eval(String var1, ScriptOutputType var2, K[] var3, V... var4);
<T> T evalsha(String var1, ScriptOutputType var2, K... var3);
<T> T evalsha(String var1, ScriptOutputType var2, K[] var3, V... var4);
List<Boolean> scriptExists(String... var1);
String scriptFlush();
String scriptKill();
String scriptLoad(V var1);
String digest(V var1);
}
异步和反应式的接口方法定义差不多,不同的地方就是返回值类型,一般我们常用的是eval()
、evalsha()
和scriptLoad()
方法。举个简单的例子:
private static RedisCommands<String, String> COMMANDS;
private static String RAW_LUA = "local key = KEYS[1]\n" +
"local value = ARGV[1]\n" +
"local timeout = ARGV[2]\n" +
"redis.call('SETEX', key, tonumber(timeout), value)\n" +
"local result = redis.call('GET', key)\n" +
"return result;";
private static AtomicReference<String> LUA_SHA = new AtomicReference<>();
@Test
public void testLua() throws Exception {
LUA_SHA.compareAndSet(null, COMMANDS.scriptLoad(RAW_LUA));
String[] keys = new String[]{"name"};
String[] args = new String[]{"throwable", "5000"};
String result = COMMANDS.evalsha(LUA_SHA.get(), ScriptOutputType.VALUE, keys, args);
log.info("Get value:{}", result);
}
// Get value:throwable
高可用和分片
为了Redis
的高可用,一般会采用普通主从(Master/Replica
,这里笔者称为普通主从模式,也就是仅仅做了主从复制,故障需要手动切换)、哨兵和集群。普通主从模式可以独立运行,也可以配合哨兵运行,只是哨兵提供自动故障转移和主节点提升功能。普通主从和哨兵都可以使用MasterSlave
,通过入参包括RedisClient
、编码解码器以及一个或者多个RedisURI
获取对应的Connection
实例。
这里注意一点,MasterSlave
中提供的方法如果只要求传入一个RedisURI
实例,那么Lettuce
会进行拓扑发现机制,自动获取Redis
主从节点信息;如果要求传入一个RedisURI
集合,那么对于普通主从模式来说所有节点信息是静态的,不会进行发现和更新。
拓扑发现的规则如下:
对于普通主从(
Master/Replica
)模式,不需要感知RedisURI
指向从节点还是主节点,只会进行一次性的拓扑查找所有节点信息,此后节点信息会保存在静态缓存中,不会更新。对于哨兵模式,会订阅所有哨兵实例并侦听订阅/发布消息以触发拓扑刷新机制,更新缓存的节点信息,也就是哨兵天然就是动态发现节点信息,不支持静态配置。
拓扑发现机制的提供API
为TopologyProvider
,需要了解其原理的可以参考具体的实现。
对于集群(Cluster
)模式,Lettuce
提供了一套独立的API
。
另外,如果Lettuce
连接面向的是非单个Redis
节点,连接实例提供了数据读取节点偏好(ReadFrom
)设置,可选值有:
MASTER
:只从Master
节点中读取。MASTER_PREFERRED
:优先从Master
节点中读取。SLAVE_PREFERRED
:优先从Slavor
节点中读取。SLAVE
:只从Slavor
节点中读取。NEAREST
:使用最近一次连接的Redis
实例读取。
普通主从模式
假设现在有三个Redis
服务形成树状主从关系如下:
节点一:localhost:6379,角色为Master。
节点二:localhost:6380,角色为Slavor,节点一的从节点。
节点三:localhost:6381,角色为Slavor,节点二的从节点。
首次动态节点发现主从模式的节点信息需要如下构建连接:
@Test
public void testDynamicReplica() throws Exception {
// 这里只需要配置一个节点的连接信息,不一定需要是主节点的信息,从节点也可以
RedisURI uri = RedisURI.builder().withHost("localhost").withPort(6379).build();
RedisClient redisClient = RedisClient.create(uri);
StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), uri);
// 只从从节点读取数据
connection.setReadFrom(ReadFrom.SLAVE);
// 执行其他Redis命令
connection.close();
redisClient.shutdown();
}
如果需要指定静态的Redis
主从节点连接属性,那么可以这样构建连接:
@Test
public void testStaticReplica() throws Exception {
List<RedisURI> uris = new ArrayList<>();
RedisURI uri1 = RedisURI.builder().withHost("localhost").withPort(6379).build();
RedisURI uri2 = RedisURI.builder().withHost("localhost").withPort(6380).build();
RedisURI uri3 = RedisURI.builder().withHost("localhost").withPort(6381).build();
uris.add(uri1);
uris.add(uri2);
uris.add(uri3);
RedisClient redisClient = RedisClient.create();
StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(redisClient,
new Utf8StringCodec(), uris);
// 只从主节点读取数据
connection.setReadFrom(ReadFrom.MASTER);
// 执行其他Redis命令
connection.close();
redisClient.shutdown();
}
哨兵模式
由于Lettuce
自身提供了哨兵的拓扑发现机制,所以只需要随便配置一个哨兵节点的RedisURI
实例即可:
@Test
public void testDynamicSentinel() throws Exception {
RedisURI redisUri = RedisURI.builder()
.withPassword("你的密码")
.withSentinel("localhost", 26379)
.withSentinelMasterId("哨兵Master的ID")
.build();
RedisClient redisClient = RedisClient.create();
StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), redisUri);
// 只允许从从节点读取数据
connection.setReadFrom(ReadFrom.SLAVE);
RedisCommands<String, String> command = connection.sync();
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
command.set("name", "throwable", setArgs);
String value = command.get("name");
log.info("Get value:{}", value);
}
// Get value:throwable
集群模式
鉴于笔者对Redis
集群模式并不熟悉,Cluster
模式下的API
使用本身就有比较多的限制,所以这里只简单介绍一下怎么用。先说几个特性:
下面的API提供跨槽位(Slot
)调用的功能:
RedisAdvancedClusterCommands
。RedisAdvancedClusterAsyncCommands
。RedisAdvancedClusterReactiveCommands
。
静态节点选择功能:
masters
:选择所有主节点执行命令。slaves
:选择所有从节点执行命令,其实就是只读模式。all nodes
:命令可以在所有节点执行。
集群拓扑视图动态更新功能:
手动更新,主动调用
RedisClusterClient#reloadPartitions()
。后台定时更新。
自适应更新,基于连接断开和
MOVED/ASK
命令重定向自动更新。
Redis
集群搭建详细过程可以参考官方文档,假设已经搭建好集群如下(192.168.56.200
是笔者的虚拟机Host):
192.168.56.200:7001 => 主节点,槽位0-5460。
192.168.56.200:7002 => 主节点,槽位5461-10922。
192.168.56.200:7003 => 主节点,槽位10923-16383。
192.168.56.200:7004 => 7001的从节点。
192.168.56.200:7005 => 7002的从节点。
192.168.56.200:7006 => 7003的从节点。
简单的集群连接和使用方式如下:
@Test
public void testSyncCluster(){
RedisURI uri = RedisURI.builder().withHost("192.168.56.200").build();
RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);
StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();
RedisAdvancedClusterCommands<String, String> commands = connection.sync();
commands.setex("name",10, "throwable");
String value = commands.get("name");
log.info("Get value:{}", value);
}
// Get value:throwable
节点选择:
@Test
public void testSyncNodeSelection() {
RedisURI uri = RedisURI.builder().withHost("192.168.56.200").withPort(7001).build();
RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);
StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();
RedisAdvancedClusterCommands<String, String> commands = connection.sync();
// commands.all(); // 所有节点
// commands.masters(); // 主节点
// 从节点只读
NodeSelection<String, String> replicas = commands.slaves();
NodeSelectionCommands<String, String> nodeSelectionCommands = replicas.commands();
// 这里只是演示,一般应该禁用keys *命令
Executions<List<String>> keys = nodeSelectionCommands.keys("*");
keys.forEach(key -> log.info("key: {}", key));
connection.close();
redisClusterClient.shutdown();
}
定时更新集群拓扑视图(每隔十分钟更新一次,这个时间自行考量,不能太频繁):
@Test
public void testPeriodicClusterTopology() throws Exception {
RedisURI uri = RedisURI.builder().withHost("192.168.56.200").withPort(7001).build();
RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);
ClusterTopologyRefreshOptions options = ClusterTopologyRefreshOptions
.builder()
.enablePeriodicRefresh(Duration.of(10, ChronoUnit.MINUTES))
.build();
redisClusterClient.setOptions(ClusterClientOptions.builder().topologyRefreshOptions(options).build());
StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();
RedisAdvancedClusterCommands<String, String> commands = connection.sync();
commands.setex("name", 10, "throwable");
String value = commands.get("name");
log.info("Get value:{}", value);
Thread.sleep(Integer.MAX_VALUE);
connection.close();
redisClusterClient.shutdown();
}
自适应更新集群拓扑视图:
@Test
public void testAdaptiveClusterTopology() throws Exception {
RedisURI uri = RedisURI.builder().withHost("192.168.56.200").withPort(7001).build();
RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);
ClusterTopologyRefreshOptions options = ClusterTopologyRefreshOptions.builder()
.enableAdaptiveRefreshTrigger(
ClusterTopologyRefreshOptions.RefreshTrigger.MOVED_REDIRECT,
ClusterTopologyRefreshOptions.RefreshTrigger.PERSISTENT_RECONNECTS
)
.adaptiveRefreshTriggersTimeout(Duration.of(30, ChronoUnit.SECONDS))
.build();
redisClusterClient.setOptions(ClusterClientOptions.builder().topologyRefreshOptions(options).build());
StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();
RedisAdvancedClusterCommands<String, String> commands = connection.sync();
commands.setex("name", 10, "throwable");
String value = commands.get("name");
log.info("Get value:{}", value);
Thread.sleep(Integer.MAX_VALUE);
connection.close();
redisClusterClient.shutdown();
}
动态命令和自定义命令
自定义命令是Redis
命令有限集,不过可以更细粒度指定KEY
、ARGV
、命令类型、编码解码器和返回值类型,依赖于dispatch()
方法:
// 自定义实现PING方法
@Test
public void testCustomPing() throws Exception {
RedisURI redisUri = RedisURI.builder()
.withHost("localhost")
.withPort(6379)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
RedisClient redisClient = RedisClient.create(redisUri);
StatefulRedisConnection<String, String> connect = redisClient.connect();
RedisCommands<String, String> sync = connect.sync();
RedisCodec<String, String> codec = StringCodec.UTF8;
String result = sync.dispatch(CommandType.PING, new StatusOutput<>(codec));
log.info("PING:{}", result);
connect.close();
redisClient.shutdown();
}
// PING:PONG
// 自定义实现Set方法
@Test
public void testCustomSet() throws Exception {
RedisURI redisUri = RedisURI.builder()
.withHost("localhost")
.withPort(6379)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
RedisClient redisClient = RedisClient.create(redisUri);
StatefulRedisConnection<String, String> connect = redisClient.connect();
RedisCommands<String, String> sync = connect.sync();
RedisCodec<String, String> codec = StringCodec.UTF8;
sync.dispatch(CommandType.SETEX, new StatusOutput<>(codec),
new CommandArgs<>(codec).addKey("name").add(5).addValue("throwable"));
String result = sync.get("name");
log.info("Get value:{}", result);
connect.close();
redisClient.shutdown();
}
// Get value:throwable
动态命令是基于Redis
命令有限集,并且通过注解和动态代理完成一些复杂命令组合的实现。主要注解在io.lettuce.core.dynamic.annotation
包路径下。简单举个例子:
public interface CustomCommand extends Commands {
// SET [key] [value]
@Command("SET ?0 ?1")
String setKey(String key, String value);
// SET [key] [value]
@Command("SET :key :value")
String setKeyNamed(@Param("key") String key, @Param("value") String value);
// MGET [key1] [key2]
@Command("MGET ?0 ?1")
List<String> mGet(String key1, String key2);
/**
* 方法名作为命令
*/
@CommandNaming(strategy = CommandNaming.Strategy.METHOD_NAME)
String mSet(String key1, String value1, String key2, String value2);
}
@Test
public void testCustomDynamicSet() throws Exception {
RedisURI redisUri = RedisURI.builder()
.withHost("localhost")
.withPort(6379)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
RedisClient redisClient = RedisClient.create(redisUri);
StatefulRedisConnection<String, String> connect = redisClient.connect();
RedisCommandFactory commandFactory = new RedisCommandFactory(connect);
CustomCommand commands = commandFactory.getCommands(CustomCommand.class);
commands.setKey("name", "throwable");
commands.setKeyNamed("throwable", "doge");
log.info("MGET ===> " + commands.mGet("name", "throwable"));
commands.mSet("key1", "value1","key2", "value2");
log.info("MGET ===> " + commands.mGet("key1", "key2"));
connect.close();
redisClient.shutdown();
}
// MGET ===> [throwable, doge]
// MGET ===> [value1, value2]
高阶特性
Lettuce
有很多高阶使用特性,这里只列举个人认为常用的两点:
配置客户端资源。
使用连接池。
更多其他特性可以自行参看官方文档。
配置客户端资源
客户端资源的设置与Lettuce
的性能、并发和事件处理相关。线程池或者线程组相关配置占据客户端资源配置的大部分(EventLoopGroups
和EventExecutorGroup
),这些线程池或者线程组是连接程序的基础组件。一般情况下,客户端资源应该在多个Redis
客户端之间共享,并且在不再使用的时候需要自行关闭。笔者认为,客户端资源是面向Netty
的。注意:除非特别熟悉或者花长时间去测试调整下面提到的参数,否则在没有经验的前提下凭直觉修改默认值,有可能会踩坑。
客户端资源接口是ClientResources
,实现类是DefaultClientResources
。
构建DefaultClientResources
实例:
// 默认
ClientResources resources = DefaultClientResources.create();
// 建造器
ClientResources resources = DefaultClientResources.builder()
.ioThreadPoolSize(4)
.computationThreadPoolSize(4)
.build()
使用:
ClientResources resources = DefaultClientResources.create();
// 非集群
RedisClient client = RedisClient.create(resources, uri);
// 集群
RedisClusterClient clusterClient = RedisClusterClient.create(resources, uris);
// ......
client.shutdown();
clusterClient.shutdown();
// 关闭资源
resources.shutdown();
客户端资源基本配置:
属性 | 描述 | 默认值 |
---|---|---|
ioThreadPoolSize |
I/O 线程数 |
Runtime.getRuntime().availableProcessors() |
computationThreadPoolSize |
任务线程数 | Runtime.getRuntime().availableProcessors() |
客户端资源高级配置:
属性 | 描述 | 默认值 |
---|---|---|
eventLoopGroupProvider |
EventLoopGroup 提供商 |
- |
eventExecutorGroupProvider |
EventExecutorGroup 提供商 |
- |
eventBus |
事件总线 | DefaultEventBus |
commandLatencyCollectorOptions |
命令延时收集器配置 | DefaultCommandLatencyCollectorOptions |
commandLatencyCollector |
命令延时收集器 | DefaultCommandLatencyCollector |
commandLatencyPublisherOptions |
命令延时发布器配置 | DefaultEventPublisherOptions |
dnsResolver |
DNS 处理器 |
JDK或者Netty 提供 |
reconnectDelay |
重连延时配置 | Delay.exponential() |
nettyCustomizer |
Netty 自定义配置器 |
- |
tracing |
轨迹记录器 | - |
非集群客户端RedisClient
的属性配置:
Redis
非集群客户端RedisClient
本身提供了配置属性方法:
RedisClient client = RedisClient.create(uri);
client.setOptions(ClientOptions.builder()
.autoReconnect(false)
.pingBeforeActivateConnection(true)
.build());
非集群客户端的配置属性列表:
属性 | 描述 | 默认值 |
---|---|---|
pingBeforeActivateConnection |
连接激活之前是否执行PING 命令 |
false |
autoReconnect |
是否自动重连 | true |
cancelCommandsOnReconnectFailure |
重连失败是否拒绝命令执行 | false |
suspendReconnectOnProtocolFailure |
底层协议失败是否挂起重连操作 | false |
requestQueueSize |
请求队列容量 | 2147483647(Integer#MAX_VALUE) |
disconnectedBehavior |
失去连接时候的行为 | DEFAULT |
sslOptions |
SSL配置 |
- |
socketOptions |
Socket 配置 |
10 seconds Connection-Timeout, no keep-alive, no TCP noDelay |
timeoutOptions |
超时配置 | - |
publishOnScheduler |
发布反应式信号数据的调度器 | 使用I/O 线程 |
集群客户端属性配置:
Redis
集群客户端RedisClusterClient
本身提供了配置属性方法:
RedisClusterClient client = RedisClusterClient.create(uri);
ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions.builder()
.enablePeriodicRefresh(refreshPeriod(10, TimeUnit.MINUTES))
.enableAllAdaptiveRefreshTriggers()
.build();
client.setOptions(ClusterClientOptions.builder()
.topologyRefreshOptions(topologyRefreshOptions)
.build());
集群客户端的配置属性列表:
属性 | 描述 | 默认值 |
---|---|---|
enablePeriodicRefresh |
是否允许周期性更新集群拓扑视图 | false |
refreshPeriod |
更新集群拓扑视图周期 | 60秒 |
enableAdaptiveRefreshTrigger |
设置自适应更新集群拓扑视图触发器RefreshTrigger |
- |
adaptiveRefreshTriggersTimeout |
自适应更新集群拓扑视图触发器超时设置 | 30秒 |
refreshTriggersReconnectAttempts |
自适应更新集群拓扑视图触发重连次数 | 5 |
dynamicRefreshSources |
是否允许动态刷新拓扑资源 | true |
closeStaleConnections |
是否允许关闭陈旧的连接 | true |
maxRedirects |
集群重定向次数上限 | 5 |
validateClusterNodeMembership |
是否校验集群节点的成员关系 | true |
使用连接池
引入连接池依赖commons-pool2
:
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
<version>2.7.0</version>
</dependency
基本使用如下:
@Test
public void testUseConnectionPool() throws Exception {
RedisURI redisUri = RedisURI.builder()
.withHost("localhost")
.withPort(6379)
.withTimeout(Duration.of(10, ChronoUnit.SECONDS))
.build();
RedisClient redisClient = RedisClient.create(redisUri);
GenericObjectPoolConfig poolConfig = new GenericObjectPoolConfig();
GenericObjectPool<StatefulRedisConnection<String, String>> pool
= ConnectionPoolSupport.createGenericObjectPool(redisClient::connect, poolConfig);
try (StatefulRedisConnection<String, String> connection = pool.borrowObject()) {
RedisCommands<String, String> command = connection.sync();
SetArgs setArgs = SetArgs.Builder.nx().ex(5);
command.set("name", "throwable", setArgs);
String n = command.get("name");
log.info("Get value:{}", n);
}
pool.close();
redisClient.shutdown();
}
其中,同步连接的池化支持需要用ConnectionPoolSupport
,异步连接的池化支持需要用AsyncConnectionPoolSupport
(Lettuce
5.1之后才支持)。
几个常见的渐进式删除例子
渐进式删除Hash中的域-属性:
@Test
public void testDelBigHashKey() throws Exception {
// SCAN参数
ScanArgs scanArgs = ScanArgs.Builder.limit(2);
// TEMP游标
ScanCursor cursor = ScanCursor.INITIAL;
// 目标KEY
String key = "BIG_HASH_KEY";
prepareHashTestData(key);
log.info("开始渐进式删除Hash的元素...");
int counter = 0;
do {
MapScanCursor<String, String> result = COMMAND.hscan(key, cursor, scanArgs);
// 重置TEMP游标
cursor = ScanCursor.of(result.getCursor());
cursor.setFinished(result.isFinished());
Collection<String> fields = result.getMap().values();
if (!fields.isEmpty()) {
COMMAND.hdel(key, fields.toArray(new String[0]));
}
counter++;
} while (!(ScanCursor.FINISHED.getCursor().equals(cursor.getCursor()) && ScanCursor.FINISHED.isFinished() == cursor.isFinished()));
log.info("渐进式删除Hash的元素完毕,迭代次数:{} ...", counter);
}
private void prepareHashTestData(String key) throws Exception {
COMMAND.hset(key, "1", "1");
COMMAND.hset(key, "2", "2");
COMMAND.hset(key, "3", "3");
COMMAND.hset(key, "4", "4");
COMMAND.hset(key, "5", "5");
}
渐进式删除集合中的元素:
@Test
public void testDelBigSetKey() throws Exception {
String key = "BIG_SET_KEY";
prepareSetTestData(key);
// SCAN参数
ScanArgs scanArgs = ScanArgs.Builder.limit(2);
// TEMP游标
ScanCursor cursor = ScanCursor.INITIAL;
log.info("开始渐进式删除Set的元素...");
int counter = 0;
do {
ValueScanCursor<String> result = COMMAND.sscan(key, cursor, scanArgs);
// 重置TEMP游标
cursor = ScanCursor.of(result.getCursor());
cursor.setFinished(result.isFinished());
List<String> values = result.getValues();
if (!values.isEmpty()) {
COMMAND.srem(key, values.toArray(new String[0]));
}
counter++;
} while (!(ScanCursor.FINISHED.getCursor().equals(cursor.getCursor()) && ScanCursor.FINISHED.isFinished() == cursor.isFinished()));
log.info("渐进式删除Set的元素完毕,迭代次数:{} ...", counter);
}
private void prepareSetTestData(String key) throws Exception {
COMMAND.sadd(key, "1", "2", "3", "4", "5");
}
渐进式删除有序集合中的元素:
@Test
public void testDelBigZSetKey() throws Exception {
// SCAN参数
ScanArgs scanArgs = ScanArgs.Builder.limit(2);
// TEMP游标
ScanCursor cursor = ScanCursor.INITIAL;
// 目标KEY
String key = "BIG_ZSET_KEY";
prepareZSetTestData(key);
log.info("开始渐进式删除ZSet的元素...");
int counter = 0;
do {
ScoredValueScanCursor<String> result = COMMAND.zscan(key, cursor, scanArgs);
// 重置TEMP游标
cursor = ScanCursor.of(result.getCursor());
cursor.setFinished(result.isFinished());
List<ScoredValue<String>> scoredValues = result.getValues();
if (!scoredValues.isEmpty()) {
COMMAND.zrem(key, scoredValues.stream().map(ScoredValue<String>::getValue).toArray(String[]::new));
}
counter++;
} while (!(ScanCursor.FINISHED.getCursor().equals(cursor.getCursor()) && ScanCursor.FINISHED.isFinished() == cursor.isFinished()));
log.info("渐进式删除ZSet的元素完毕,迭代次数:{} ...", counter);
}
private void prepareZSetTestData(String key) throws Exception {
COMMAND.zadd(key, 0, "1");
COMMAND.zadd(key, 0, "2");
COMMAND.zadd(key, 0, "3");
COMMAND.zadd(key, 0, "4");
COMMAND.zadd(key, 0, "5");
}
在SpringBoot中使用Lettuce
个人认为,spring-data-redis
中的API
封装并不是很优秀,用起来比较重,不够灵活,这里结合前面的例子和代码,在SpringBoot
脚手架项目中配置和整合Lettuce
。先引入依赖:
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.1.8.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
<version>5.1.8.RELEASE</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.10</version>
<scope>provided</scope>
</dependency>
</dependencies>
一般情况下,每个应用应该使用单个Redis
客户端实例和单个连接实例,这里设计一个脚手架,适配单机、普通主从、哨兵和集群四种使用场景。对于客户端资源,采用默认的实现即可。对于Redis
的连接属性,比较主要的有Host
、Port
和Password
,其他可以暂时忽略。基于约定大于配置的原则,先定制一系列属性配置类(其实有些配置是可以完全共用,但是考虑到要清晰描述类之间的关系,这里拆分多个配置属性类和多个配置方法):
@Data
@ConfigurationProperties(prefix = "lettuce")
public class LettuceProperties {
private LettuceSingleProperties single;
private LettuceReplicaProperties replica;
private LettuceSentinelProperties sentinel;
private LettuceClusterProperties cluster;
}
@Data
public class LettuceSingleProperties {
private String host;
private Integer port;
private String password;
}
@EqualsAndHashCode(callSuper = true)
@Data
public class LettuceReplicaProperties extends LettuceSingleProperties {
}
@EqualsAndHashCode(callSuper = true)
@Data
public class LettuceSentinelProperties extends LettuceSingleProperties {
private String masterId;
}
@EqualsAndHashCode(callSuper = true)
@Data
public class LettuceClusterProperties extends LettuceSingleProperties {
}
配置类如下,主要使用@ConditionalOnProperty
做隔离,一般情况下,很少有人会在一个应用使用一种以上的Redis
连接场景:
@RequiredArgsConstructor
@Configuration
@ConditionalOnClass(name = "io.lettuce.core.RedisURI")
@EnableConfigurationProperties(value = LettuceProperties.class)
public class LettuceAutoConfiguration {
private final LettuceProperties lettuceProperties;
@Bean(destroyMethod = "shutdown")
public ClientResources clientResources() {
return DefaultClientResources.create();
}
@Bean(destroyMethod = "shutdown")
@ConditionalOnProperty(name = "lettuce.single.host")
public RedisClient singleRedisClient(ClientResources clientResources) {
LettuceSingleProperties singleProperties = lettuceProperties.getSingle();
RedisURI uri = RedisURI.builder()
.withHost(singleProperties.getHost())
.withPort(singleProperties.getPort())
.withPassword(singleProperties.getPassword())
.build();
return RedisClient.create(clientResources, uri);
}
@Bean(destroyMethod = "close")
@ConditionalOnProperty(name = "lettuce.single.host")
public StatefulRedisConnection<String, String> singleRedisConnection(@Qualifier("singleRedisClient") RedisClient singleRedisClient) {
return singleRedisClient.connect();
}
@Bean(destroyMethod = "shutdown")
@ConditionalOnProperty(name = "lettuce.replica.host")
public RedisClient replicaRedisClient(ClientResources clientResources) {
LettuceReplicaProperties replicaProperties = lettuceProperties.getReplica();
RedisURI uri = RedisURI.builder()
.withHost(replicaProperties.getHost())
.withPort(replicaProperties.getPort())
.withPassword(replicaProperties.getPassword())
.build();
return RedisClient.create(clientResources, uri);
}
@Bean(destroyMethod = "close")
@ConditionalOnProperty(name = "lettuce.replica.host")
public StatefulRedisConnection<String, String> replicaRedisConnection(@Qualifier("replicaRedisClient") RedisClient replicaRedisClient) {
return replicaRedisClient.connect();
}
@Bean(destroyMethod = "shutdown")
@ConditionalOnProperty(name = "lettuce.sentinel.host")
public RedisClient sentinelRedisClient(ClientResources clientResources) {
LettuceSentinelProperties sentinelProperties = lettuceProperties.getSentinel();
RedisURI uri = RedisURI.builder()
.withHost(sentinelProperties.getHost())
.withPort(sentinelProperties.getPort())
.withPassword(sentinelProperties.getPassword())
.withSentinel(sentinelProperties.getHost(), sentinelProperties.getPort())
.withSentinelMasterId(sentinelProperties.getMasterId())
.build();
return RedisClient.create(clientResources, uri);
}
@Bean(destroyMethod = "close")
@ConditionalOnProperty(name = "lettuce.sentinel.host")
public StatefulRedisConnection<String, String> sentinelRedisConnection(@Qualifier("sentinelRedisClient") RedisClient sentinelRedisClient) {
return sentinelRedisClient.connect();
}
@Bean(destroyMethod = "shutdown")
@ConditionalOnProperty(name = "lettuce.cluster.host")
public RedisClusterClient redisClusterClient(ClientResources clientResources) {
LettuceClusterProperties clusterProperties = lettuceProperties.getCluster();
RedisURI uri = RedisURI.builder()
.withHost(clusterProperties.getHost())
.withPort(clusterProperties.getPort())
.withPassword(clusterProperties.getPassword())
.build();
return RedisClusterClient.create(clientResources, uri);
}
@Bean(destroyMethod = "close")
@ConditionalOnProperty(name = "lettuce.cluster")
public StatefulRedisClusterConnection<String, String> clusterConnection(RedisClusterClient clusterClient) {
return clusterClient.connect();
}
}
最后为了让IDE
识别我们的配置,可以添加IDE
亲缘性,/META-INF
文件夹下新增一个文件spring-configuration-metadata.json
,内容如下:
{
"properties": [
{
"name": "lettuce.single",
"type": "club.throwable.spring.lettuce.LettuceSingleProperties",
"description": "单机配置",
"sourceType": "club.throwable.spring.lettuce.LettuceProperties"
},
{
"name": "lettuce.replica",
"type": "club.throwable.spring.lettuce.LettuceReplicaProperties",
"description": "主从配置",
"sourceType": "club.throwable.spring.lettuce.LettuceProperties"
},
{
"name": "lettuce.sentinel",
"type": "club.throwable.spring.lettuce.LettuceSentinelProperties",
"description": "哨兵配置",
"sourceType": "club.throwable.spring.lettuce.LettuceProperties"
},
{
"name": "lettuce.single",
"type": "club.throwable.spring.lettuce.LettuceClusterProperties",
"description": "集群配置",
"sourceType": "club.throwable.spring.lettuce.LettuceProperties"
}
]
}
如果想IDE
亲缘性做得更好,可以添加/META-INF/additional-spring-configuration-metadata.json
进行更多细节定义。简单使用如下:
@Slf4j
@Component
public class RedisCommandLineRunner implements CommandLineRunner {
@Autowired
@Qualifier("singleRedisConnection")
private StatefulRedisConnection<String, String> connection;
@Override
public void run(String... args) throws Exception {
RedisCommands<String, String> redisCommands = connection.sync();
redisCommands.setex("name", 5, "throwable");
log.info("Get value:{}", redisCommands.get("name"));
}
}
// Get value:throwable
小结
本文算是基于Lettuce
的官方文档,对它的使用进行全方位的分析,包括主要功能、配置都做了一些示例,限于篇幅部分特性和配置细节没有分析。Lettuce
已经被spring-data-redis
接纳作为官方的Redis
客户端驱动,所以值得信赖,它的一些API
设计确实比较合理,扩展性高的同时灵活性也高。个人建议,基于Lettuce
包自行添加配置到SpringBoot
应用用起来会得心应手,毕竟RedisTemplate
实在太笨重,而且还屏蔽了Lettuce
一些高级特性和灵活的API
。
参考资料:
Lettuce Reference Guide