R语言实现 朴素贝叶斯分类(垃圾短信)
ham代表垃圾短信
spam代表非垃圾短信
# Example: Filtering spam SMS messages ----
## Step 1: 查看模型概要
#read the sms data into the sms data frame
sms_raw <- read.csv("F:\\rwork\\Machine Learning with R (2nd Ed.)\\Chapter 04\\sms_spam.csv", stringsAsFactors = FALSE)
#examine the structure of the sms data
str(sms_raw)
因子化
type <- factor( sms_raw$type )
检查变量
type)
type)
建立语料库(短信内容)
library('tm')
sms_corpus <- VCorpus(VectorSource(sms_raw$text))
head(sms_corpus)
观察第一条和第二条短信的概要
print(sms_corpus)
inspect(sms_corpus[1:2])
#观看第一条短信内容
as.character(sms_corpus[[1]])
lapply(sms_corpus[1:2], as.character)
全部小写
sms_corpus_clean <- tm_map(sms_corpus, content_transformer(tolower))
#show the difference between sms_corpus and corpus_clean
as.character(sms_corpus[[1]])
as.character(sms_corpus_clean[[1]])
删除数字
sms_corpus_clean <- tm_map(sms_corpus_clean, removeNumbers) # remove numbers
删除填充词
stopwords里面是to,and,but等一些自带的一些词
sms_corpus_clean <- tm_map(sms_corpus_clean, removeWords, stopwords())
删除标点符号
sms_corpus_clean <- tm_map(sms_corpus_clean, removePunctuation)
自定义函数
removePunctuation("hello...world")
replacePunctuation <- function(x) { gsub("[[:punct:]]+", " ", x) }
gsub函数用空格代替任何标点符号
replacePunctuation("hello...world")
此函数将单词全部变为原形
library(SnowballC)
wordStem(c("learn", "learned", "learning", "learns"))
为了使得wordStem应用于整个文本语料库
sms_corpus_clean <- tm_map(sms_corpus_clean, stemDocument)
删除多余的空格
sms_corpus_clean <- tm_map(sms_corpus_clean, stripWhitespace)
观察一些变换前后的结果
lapply(sms_corpus[1:3], as.character)
lapply(sms_corpus_clean[1:3], as.character)
创建稀疏矩阵
sms_dtm <- DocumentTermMatrix(sms_corpus_clean)
#alternative solution: create a document-term sparse matrix directly from the SMS corpus
sms_dtm2 <- DocumentTermMatrix(sms_corpus, control = list(
tolower = TRUE,
removeNumbers = TRUE,
stopwords = TRUE,
removePunctuation = TRUE,
stemming = TRUE
))
#上述结果中sms_dtm和sms_dtm2略有不一样,主要是 不同的停用词 去除功能
#alternative solution: using custom stop words function ensures identical result
sms_dtm3 <- DocumentTermMatrix(sms_corpus, control = list(
tolower = TRUE,
removeNumbers = TRUE,
stopwords = function(x) { removeWords(x, stopwords()) },
removePunctuation = TRUE,
stemming = TRUE
))
#自定义函数,修改stopwords,获得与sms_dtm2一样的结果
#compare the result
sms_dtm
sms_dtm2
sms_dtm3
#creating training and test datasets
一部分作为训练数据,一部分作为测试数据
sms_dtm_train <- sms_dtm[1:4169, ]
sms_dtm_test <- sms_dtm[4170:5559, ]
#also save the labels
sms_train_labels <- sms_raw[1:4169, ]$type
sms_test_labels <- sms_raw[4170:5559, ]$type
#check that the proportion of spam is similar
prop.table(table(sms_train_labels))
prop.table(table(sms_test_labels))#计算所占比例
#word cloud visualization
library(wordcloud)
wordcloud(sms_corpus_clean, min.freq = 50, random.order = FALSE)
画云图
在语料库最小次数50次;不随机排列
获得子集
spam <- subset(sms_raw, type == "spam")
ham <- subset(sms_raw, type == "ham")
wordcloud(spam$text, max.words = 40, scale = c(3, 0.5))#最常见的40个单词
wordcloud(ham$text, max.words = 40, scale = c(3, 0.5))
剔除训练数据中出现次数少于记录总数0.1%的单词
sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999)
sms_dtm_freq_train
找出最少出现5次的单词
sms_freq_words <- findFreqTerms(sms_dtm_train, 5)
str(sms_freq_words)
查看上面筛选过后的词的频率
sms_dtm_freq_train <- sms_dtm_train[ , sms_freq_words]
sms_dtm_freq_test <- sms_dtm_test[ , sms_freq_words]
如果大于1就是Yes
convert_counts <- function(x) {
x <- ifelse(x > 0, "Yes", "No")}
将语料中不是0的全部换为Yes
sms_train <- apply(sms_dtm_freq_train, MARGIN = 2, convert_counts)
sms_test <- apply(sms_dtm_freq_test, MARGIN = 2, convert_counts)
Step 2: 分类模型建立
library(e1071)
sms_classifier <- naiveBayes(sms_train, sms_train_labels)
Step 3: 评估模型性能
sms_test_pred <- predict(sms_classifier, sms_test)
library(gmodels)
CrossTable(sms_test_pred, sms_test_labels,
prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,
dnn = c('predicted', 'actual'))
我们发现有6+34=40条短信未被正确分类
Step 4: 模型的性能提升
sms_classifier2 <- naiveBayes(sms_train, sms_train_labels, laplace = 1)
sms_test_pred2 <- predict(sms_classifier2, sms_test)
CrossTable(sms_test_pred2, sms_test_labels,
prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,
dnn = c('predicted', 'actual'))
改善模型,将拉普拉斯(laplace)值设为1,发现有6+32=38条短信未被正确分类。
虽然从40到38看上去是一个很小的变化,考虑到模型的准确性已经相当好了,这其实是很大的提高。
最终该模型将超过97%的短信正确分成垃圾短信和非垃圾短信。
如果有错误欢迎指正哦~~~撒花
(可私信要数据哦~)