运营大规模HDFS集群必看:系统升级后,怎么性能反而恶化了?!
本文以唯品会HDFS实际应用场景和问题导向触发,介绍了优化方案的局限性,分享了这些局限性的解决和实施经验。这对于技术运营较大规模的HDFS集群有一定借鉴意义。
一、性能挑战
HDFS是一个分布式系统,只要有足够的资源,可以扩容上千个节点支持100PB以上的集群。
我们发现Hadoop集群升级(2.5.0-cdh5.3.2-->2.6.0-cdh5.13.1)以后,NameNode RPC(remote procedure call)queue time在持续的在间隔一周左右性能恶化,在极端环境下出现一个RPC查询需要等待好几分钟的情况,Hive作业出现大量的同一类型错误失败:
重启集群以后问题可以得到缓解,但是这个问题需要从根本上考虑如何解决。
二、性能优化
RPC变慢的根源在于HDFS的NameNode吞吐量和性能瓶颈。NameNode存在最大吞吐量限制,每一次写的请求都会产生排他性“写锁”,强制其他任何操作必须在队列里等待它完成。
NameNode的RPC queue time指标可以显示表达这个系统当前状态。对此我们主要从代码和业务两方面进行优化。
三、Datanode延迟块汇报
当datanode上新写完一个块,默认会立即汇报给namenode。在一个大规模Hadoop集群上,每时每刻都在写数据,datanode上随时都会有写完数据块然后汇报给namenode的情况。
因此namenode会频繁处理datanode这种快汇报请求,会频繁地持有锁,其实非常影响其他rpc的处理和响应时间。
通过延迟快汇报配置可以减少datanode写完块后的块汇报次数,提高namenode处理rpc的响应时间和处理速度。
配置:
<property>
<name>dfs.blockreport.incremental.intervalMsec</name>
<value>300</value>
</property>
目前我们HDFS集群上此参数配置为300毫秒,就是当datanode新写一个块的时候,不是立即汇报给namenode,而是要等待300毫秒,在此时间段内新写的块一次性汇报给namenode。
四、删除块个数可配置
由于HDFS的单一锁设计,NN对于大目录删除行为并没有表现出很好的执行效果,严重时甚至会出现长时间block其它应用的正常请求处理。
Hadoop新版本引入新结构FoldedTreeSet来存储DN的块数据,但是它并不利于update操作,因此删除问题在升级后的版本中体现更为明显了。
我们也在社区上提了相关issue:https://issues.apache.org/jira/browse/HDFS-13671
后续我们在研究HDFS删除块的行为中,发现NN在每次batch删除块的时候,是以固定size按照batch方式定期删除收集到的块信息。在每次batch间隙,其它请求就有机会得到NN锁的机会。
于是我们考虑到一个改进手段,即是否能让batch size变得更加灵活可配置化,以此来控制给其它请求得到NN锁处理的概率。
基于这个思路,我们新建了以下配置项,并改动了相关代码逻辑。
<property>
<name>dfs.namenode.block.deletion.increment</name>
<value>1000</value>
<description>
The number of block deletion increment.
This setting will control the block increment deletion rate to
ensure that other waiters on the lock can get in.
</description>
</property>
此优化也已经被我们贡献到Hadoop社区,相关JIRA链接:https://issues.apache.org/jira/browse/HDFS-13831(点击阅读原文即可进入页面)
五、HDFS Federation
在日常HDFS集群维护过程中,我们发现HDFS集群独立运行模式存在着许多弊端:
独立集群模式运维成本高,上下线机器每次都要制定分配所属集群。
多独立集群模式无非良好均衡资源和请求,经常发现A集群平时负载要远远高于B集群,这本质上是资源共享利用的问题。
单集群模式性能瓶颈问题。
综上,我们对现有大集群独立运行模式进行了Federation改造。Federation改造的关键前提是不同namespace的Cluster ID必须保持一致,否则DN在上报过程中会抛出异常而注册失败。
鉴于我们内部集群在初始搭建时指定了统一的Cluster ID,所以并没有在前期再对Cluster ID做额外人工转换工作。
在Federation过程中,我们主要遇到了3个问题:
不同集群拓扑结构不一致导致DN注册上报错误,错误如下:
2019-01-29 14:12:10,821 ERROR [Thread-30] org.apache.Hadoop.HDFS.server.datanode.DataNode: Initialization failed for Block pool BP-1508644862-xx.xx.xx.xx-1493781183457 (Datanode Uuid b8a47300-9fd9-4226-93a1-6649341b3b2c) service to xx.xx.xx.xx:8022 Failed to add /default-rack/xx.xx.xx.xx:50010: You cannot have a rack and a non-rack node at the same level of the network topology.
at org.apache.Hadoop.net.NetworkTopology.add(NetworkTopology.java:414)
at org.apache.Hadoop.HDFS.server.blockmanagement.DatanodeManager.registerDatanode(DatanodeManager.java:987)
at org.apache.Hadoop.HDFS.server.namenode.FSNamesystem.registerDatanode(FSNamesystem.java:5264)
at org.apache.Hadoop.HDFS.server.namenode.NameNodeRpcServer.registerDatanode(NameNodeRpcServer.java:1291)
at org.apache.Hadoop.HDFS.protocolPB.DatanodeProtocolServerSideTranslatorPB.registerDatanode(DatanodeProtocolServerSideTranslatorPB.java:100)
at org.apache.Hadoop.HDFS.protocol.proto.DatanodeProtocolProtos$DatanodeProtocolService$2.callBlockingMethod(DatanodeProtocolProtos.java:29184)
上述错误产生的根本原因是DN在Federation注册时在不同的namespace拥有不同level层级。后面经过原因排查,是由于我们没有完全同步好2个集群rack-awareness的脚本映射关系,由配置项net.topology.script.file.name所配置。
后续在DN Federation上报过程中,我们又遇到了因为本地du命令不准确导致DN capacity容量double的异常,继而导致DN无非正常进行写数据块行为。
因为DN在上报自身capacity容量时,需要依赖于本地系统du命令来计算实际使用空间大小。
后面我们对系统du命令进行了校准修复,最后DN能正常Federation上报注册。
如今,我们已经完全打通2个独立大集群,同时加入第三套NN,来做新的namespace存储,在未来会对数据进行业务划分,将数据均衡打散在不同namespace下,充分利用每个namespace下NN的处理能力。
另外一个问题是在Federation完成后发现的。
因为Federation过程是将已有独立大集群模式改造成Federation模式,而不是直接搭建新Federation集群模式,我们发现NN元数据膨胀地比较厉害,即使block的元数据没有发生多大变化,但是实质上DN和block的映射是会得到膨胀的,因此后期马上对NN的JVM参数进行了相关调整。
我们原有主集群的运行模式如下,两个独立大集群运作模式:
经Federation改造完成的结构如下, 最终效果是所有datanode向全部三套NN汇报:
六、客户端监控以及temp目录分流,Hive本身降低HDFS请求
客户端监控主要是从HDFS的客户端角度出发,监控HDFS的rename、create等部分rpc操作或者write这种涉及datanode操作的操作时长。这是补充HDFS服务端rpc监控的手段之一。
出发点是,有时服务端这边的监控比较正常,但是从任务(Hive,spark或者presto)角度来看,发现一些move或者load等操作依旧花费很长时间。这意味着服务端监控仅能够体现服务端处理性能,并不能很好地衡量整个集群向外提供服务的性能。
上图是rename的平均时长,考量的是一个文件被rename后的平均时长。
上图write的平均时长,考量一个只有少量数据的文件被创建时的平均时长,通过这个指标可以评估当前namenode的8022端口以及datanode性能。
从上面分析bip以及bip03的文件操作以及rpc情况来看,可以得出如下两个结论:
占用rpc大头的是 /mr/staging, /tmp/Hive/HDFS/, /bip/developer/vipdm,其次还有/tmp/Hive/.Hive-staging,/mr/intermediate_done,/bip
切换defaultFs,明显影响到/mr/staging, /tmp/Hive/HDFS/,/mr/intermediate_done, 也非常明显影响了rpc。
如此,对temp目录进行分流将会很大程度影响集群的rpc情况。
解决方案如下:
在Hive引擎层面(或者在调度层面也ok),平衡切换defaultFs,确保临时目录均衡地分布在bip或者bip03上面。
采用第三个集群,将/mr/staging, /tmp/Hive/HDFS/, /mr/intermediate_done 迁移到上面,简而言之,就是把defaultFs设置成第三个集群(最好可以通过Federation进行分流,这样不会太大影响数据的本地性)。
使用双报,通过自动化的方式平衡bip以及bip03的压力。
Hive有很多地方都调用了HDFS的rpc接口,并发出大量rpc请求。如果能够从Hive的rpc客户方降低rpc请求,也能够很大程度缓解HDFS的压力。
Hive的insert、create等操作产生的临时数据,需要统一放到非表下,这样能够大量减少在最后rename的操作。
因为暂时用不上HDFS的Encryption,所以多次的Encryption检测显然非常浪费性能,可以设置参数选择性关闭。
七、小文件治理
小文件问题在大规模HDFS集群中是经常会遇到的问题。小文件过多引发的各种性能瓶颈在一定程度上影响了集群稳定性。我们采取了以下措施进行优化改善。
HDFS Federation
相当于横向扩展namenode的处理能力,增加namenode数量来共同分担元数据管理的压力。但这并不十全十美,只是暂时隐藏了小文件多的问题。
合并小文件
这个方案说起来简单,却也并不容易。
针对Hive相关任务,针对由历史任务产生大量小文件的作业,首先使用CombineHiveInputFormat,将多个小文件作为一个整体split,从而减少map数量,然后配置mapred.min.split.size.per.node和mapred.max.split.size增加map处理的文件大小。
这个方案我们已经做成可配置化,用定时任务合并用户历史作业产生的数据。
其次orcfile格式的Hive表,推荐使用CONCATENATE语义,orcfile的合并是stripe级别,节省了解压和格式化数据的开销,增加效率。
经过一段时间的努力小文件数量得到有效改善,如下图所示:
Hadoop Ozone是基于HDFS实现的对象存储服务,支持更大规模数据对象存储,支持各种对象大小并且拥有HDFS的可靠性、一致性和可用性。
Ozone的一大目标就是扩展HDFS,使其支持数十亿个对象的存储。目前这个项目已经成为Apache Hadoop的子项目,我们也会持续关注。
来源:唯技术订阅号(ID:VIP-Tech)
dbaplus社群欢迎广大技术人员投稿,投稿邮箱:[email protected]
想了解更多运维实操演练
灵活解决项目实施疑难?
不妨来DAMS学点独家技能
↓↓扫码可了解更多详情及报名↓↓
2019 DAMS中国数据智能管理峰会-上海站