MySQL一棵B+树能存多少条数据?
👇关注 51CTO技术栈,悦享技术,成就 CTO 梦想👇
MySQL 的 InnoDB 存储引擎一棵 B+ 树可以存放多少行数据?要搞清楚这个问题,首先要从 InnoDB 索引数据结构、数据组织方式说起。
图片来自 Pexels
我们都知道计算机有五大组成部分:控制器,运算器,存储器,输入设备,输出设备。其中很重要的,也跟今天这个题目有关系的是存储器。
我们知道万事万物都有自己的单元体系,若干个小单体组成一个个大的个体。就像拼乐高一样,可以自由组合。
所以说,如果能熟悉最小单元,就意味着我们抓住了事物的本事,再复杂的问题也会迎刃而解。
存储单元
存储器范围比较大,但是数据具体怎么存储,有自己的最小存储单元:
数据持久化存储磁盘里,磁盘的最小单元是扇区,一个扇区的大小是 512个字节。
文件系统的最小单元是块,一个块的大小是 4K。
InnoDB 存储引擎,有自己的最小单元,称之为页,一个页的大小是 16K。
InnoDB 引擎
mysql -u root -p
show variables like 'innodb_page_size';
MySQL 数据库中,table 表中的记录都是存储在页中,那么一页可以存多少行数据?
假如一行数据的大小约为 1K 字节,那么按 16K/1K=16,可以计算出一页大约能存放 16 条数据。
MySQL 的最小存储单元叫做“页”,这么多的页是如何构建一个庞大的数据组织,我们又如何知道数据存储在哪一个页中?
如果逐条遍历,性能肯定很差。为了提升查找速度,我们引入了 B+ 树,先来看下 B+ 树的存储结构:
页除了可以存放数据(叶子节点),还可以存放健值和指针(非叶子节点),当然他们是有序的。这样的数据组织形式,我们称为索引组织表。
如:上图中 page number=3 的页,该页存放键值和指向数据页的指针,这样的页由 N 个键值+指针组成。
B+ 树是如何检索记录?
首先找到根页,你怎么知道一张表的根页在哪呢?
其实每张表的根页位置在表空间文件中是固定的,即 page number=3 的页。
找到根页后通过二分查找法,定位到 id=5 的数据应该在指针 P5 指向的页中。
然后再去 page number=5 的页中查找,同样通过二分查询法即可找到 id=5 的记录。
如何计算 B+ 树的高度?
SELECT
b.name, a.name, index_id, type, a.space, a.PAGE_NO
FROM
information_schema.INNODB_SYS_INDEXES a,
information_schema.INNODB_SYS_TABLES b
WHERE
a.table_id = b.table_id AND a.space <> 0
and b.name like '%sp_job_log';
从图中可以看出,每个表的主键索引的根页的 page number 都是 3,而其他的二级索引 page number 为 4。
在根页偏移量为 64 的地方存放了该 B+ 树的 page level。主键索引 B+ 树的根页在整个表空间文件中的第 3 个页开始。
所以算出它在文件中的偏移量:16384*3+64=49152+64=49216,前 2 个字节中。
首先,找到 MySQL 数据库物理文件存放位置:
show global variables like "%datadir%" ;
hexdump 工具,查看表空间文件指定偏移量上的数据:
hexdump -s 49216 -n 10 sp_job_log.ibd
查询数据库时,不论读一行,还是读多行,都是将这些行所在的整页数据加载,然后在内存中匹配过滤出最终结果。
表的检索速度跟树的深度有直接关系,毕竟一次页加载就是一次 IO,而磁盘 IO 又是比较费时间。对于一张千万级条数 B+ 树高度为 3 的表与几十万级 B+ 树高度也为 3 的表,其实查询效率相差不大。
一棵树可以存放多少行数据?
那么一个页中能存放多少这样的组合,就代表有多少指针,即 16384/14=1170。
那么可以算出一棵高度为 2 的 B+ 树,能存放 1170*16=18720 条这样的数据记录。
同理:高度为 3 的 B+ 树可以存放的行数= 1170*1170*16=21902400。
千万级的数据存储只需要约 3 层 B+ 树,查询数据时,每加载一页(page)代表一次 IO。所以说,根据主键 id 索引查询约 3 次 IO 便可以找到目标结果。
对于一些复杂的查询,可能需要走二级索引,那么通过二级索引查找记录最多需要花费多少次 IO 呢?
首先,从二级索引 B+ 树中,根据 name 找到对应的主键 id:
第一步在辅助索引 B+ 树中检索 Name,到达其叶子节点获取对应的主键值。
第二步使用主键值在主索引 B+ 树中再执行一次 B+ 树检索操作,最终到达叶子节点即可获取整行数据。(重点在于通过其他键需要建立辅助索引)
实战演示
实际项目中,每个表的结构设计都不一样,占用的存储空间大小也各不相等。如何计算不同的 B+ 树深度下,一个表可以存储的记录条数?
我们以业务日志表 sp_job_log 为例,讲解详细的计算过程:
show table status like 'sp_job_log'\G
查看表结构:
desc sp_job_log;
单个叶子节点(页)中的记录数=16K/153=105。
非叶子节点能存放多少指针,16384/14=1170。
如果树的高度为 3,可以存放的记录行数= 1170*1170*105=143,734,500。
最后加餐
普通索引和唯一索引在查询效率上有什么不同?唯一索引就是在普通索引上增加了约束性,也就是关键字唯一,找到了关键字就停止检索。
而普通索引,可能会存在用户记录中的关键字相同的情况,根据页结构的原理,当我们读取一条记录的时候,不是单独将这条记录从磁盘中读出去,而是将这个记录所在的页全部加载到内存中进行读取。
InnoDB 存储引擎的页大小为 16KB,在一个页中可能存储着上千个记录,因此在普通索引的字段上进行查找也就是在内存中多几次判断下一条记录的操作,对于 CPU 来说,这些操作所消耗的时间是可以忽略不计的。
所以对一个索引字段进行检索,采用普通索引还是唯一索引在检索效率上基本上没有差别。
简介:前阿里架构师,出过专利,竞赛拿过奖,博客专家,负责过电商交易、社区生鲜、营销、金融等业务,多年团队管理经验,爱思考,喜欢结交朋友
编辑:陶家龙
精彩文章推荐: