使用akka框架和scala语言编写简单的RPC通信案例
前言
1)akka框架是一个并发的、分布式的、可伸缩性的、高性能的RPC通信框架,大数据开发框架Spark、flink底层原理中或多或少都用到了
2)scala语言真的很强大、好用、方便,结合了面向对象语言和函数式语言的特点
akka的原理图
大多数分布式框架或工具 都遵循着主从节点的架构设计,在这里我们暂不考虑高可用的模式(高可用可参考文章)
每个机器上的一个进程中只存在着1个通信角色对象 ActorSystem ,也就是说 ActorSystem 对象的示例只有一个,但由它创建的Master和Worker可以有多个,是多例
1)启动master 内部定时器定期检查有无超时连接(就是在一定时间内没有向我发送心跳的worker),并将失效的进行移除
2)启动worker,跟master建立网络连接,将自己的信息(workerid,内存,内核数cpu等信息)发给master进行注册
3)master收到注册信息,将注册的信息进行保存到内存(高效),也可以持久化到磁盘或zookeeper当中(数据安全),之后向worker发送注册成功的信息
4)worker收到master发来的注册成功的信息,很高兴,并启动定时器,定期发送心跳,向master报活
代码实现
Worker类代码:
import java.util.UUID
import java.util.concurrent.TimeUnit
import akka.actor.{Actor, ActorSelection, ActorSystem, Props}
import com.typesafe.config.ConfigFactory
import scala.concurrent.duration._
/**
* @author:tom
* @Date:Created in 16:49 2020/12/18
*/
class Worker extends Actor {
var masterRef: ActorSelection = _
var workerId = UUID.randomUUID().toString
//在执行构造函数(实例化对象)之后、receive方法执行之前一定会执行一次
override def preStart(): Unit = {
//向master 进行注册信息
//可以与master建立连接
masterRef = context.actorSelection("akka.tcp://MasterActorSystem@localhost:8888/user/MasterActor")
//发送消息
masterRef ! RegisterWorker(workerId, "2048", 4)
}
override def receive: Receive = {
//自己给自己发送的周期消息
case SendHeartbeat => {
// if () {
//
// } 向Master发送心跳
masterRef ! HeartBeat(workerId)
}
case RegisteredWorker => {
// println("a response from master")
//启动一个定时器
import context.dispatcher
context.system.scheduler.schedule(Duration(0, TimeUnit.MILLISECONDS), 10000.millisecond, self, SendHeartbeat)
}
}
}
object Worker {
def main(args: Array[String]): Unit = {
val host = "localhost"
val port = 9999
val configStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = $host
|akka.remote.netty.tcp.port = $port
|""".stripMargin
val config = ConfigFactory.parseString(configStr)
//创建workerActorSystem
val workerActorSystem = ActorSystem.apply("workerActorSystem", config)
//创建workerActor
val workerActor = workerActorSystem.actorOf(Props(new Worker), "WorkerActor")
}
}
Master代码:
import akka.actor.{Actor, ActorSystem, Props}
import com.typesafe.config.ConfigFactory
import scala.collection.mutable
import scala.concurrent.duration._
/**
* @author:tom
* @Date:Created in 16:08 2020/12/18
*/
class Master extends Actor {
//定义一个可变的HashMap集合用来存储worker的信息
val idToWorker = new mutable.HashMap[String, WorkerInfo]()
//master定期检查自己 是否有新的节点(worker出现)
override def preStart(): Unit = {
import context.dispatcher
context.system.scheduler.schedule(0 millisecond, 15000.millisecond, self, CheckTimeOutWorker)
}
//用来接收消息
override def receive: Receive = {
//模式匹配
case "hello" => {
println("hello~")
}
case "hi" => {
println("hi~")
}
//定时检查
case CheckTimeOutWorker => {
val deadWorkers = idToWorker.values.filter(w => System.currentTimeMillis() - w.lastHeartbeatTime > 30000)
deadWorkers.foreach(dw => {
idToWorker -= dw.workerId
})
println(s"current alive worker size:${idToWorker.size}")
}
//有worker来进行注册信息需要执行的逻辑
case RegisterWorker(workerId, memory, cores) => {
// println(s"workerId:$workerId,memory:$memory,cores:$cores")
//worker 注册成功应该执行的逻辑
//将信息存入到内存集合当中
val workerInfo: WorkerInfo = new WorkerInfo(workerId, memory, cores)
idToWorker.put(workerId, workerInfo)
//返回一个注册成功的信息
sender() ! RegisteredWorker
}
//worker端发送过来的心跳信息
case HeartBeat(workerId) => {
//根据workerId到Map中查找对应的WorkerInfo
if (idToWorker.contains(workerId)) {
//如果存在 则取出信息
val workerInfo = idToWorker(workerId)
//更新上一次的心跳时间
workerInfo.lastHeartbeatTime = System.currentTimeMillis()
}
}
}
}
object Master {
def main(args: Array[String]): Unit = {
val host = "localhost"
val port = 8888
val configStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = $host
|akka.remote.netty.tcp.port = $port
|""".stripMargin
val config = ConfigFactory.parseString(configStr)
//创建一个ActorSystem实例(单例)
val masterActorSystem = ActorSystem("MasterActorSystem", config)
//创建一个Actor
val actor = masterActorSystem.actorOf(Props[Master], "MasterActor")
//自己给自己发消息
actor ! "hello"
}
}