vlambda博客
学习文章列表

《程序猿面试题系列》之大厂常见Zookeeper面试题<3>


zookeeper 是如何保证事务的顺序一致性的?
  • zookeeper 采用了全局递增的事务 Id 来标识,所有的 proposal(提议)都在被提出的时候加上了 zxid,zxid 实际上是一个 64 位的数字,高 32 位是 epoch( 时期; 纪元; 世; 新时代)用来标识 leader 周期,如果有新的 leader 产生出来,epoch会自增,低 32 位用来递增计数。当新产生 proposal 的时候,会依据数据库的两阶段过程,首先会向其他的 server 发出事务执行请求,如果超过半数的机器都能执行并且能够成功,那么就会开始执行。

分布式集群中为什么会有 Master主节点?
  • 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,于是就需要进行 leader 选举。

zk 节点宕机如何处理?
  • Zookeeper 本身也是集群,推荐配置不少于 3 个服务器。Zookeeper 自身也要保证当一个节点宕机时,其他节点会继续提供服务。

  • 如果是一个 Follower 宕机,还有 2 台服务器提供访问,因为 Zookeeper 上的数据是有多个副本的,数据并不会丢失;

  • 如果是一个 Leader 宕机,Zookeeper 会选举出新的 Leader。

  • ZK 集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在 ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。

所以

  • 3 个节点的 cluster 可以挂掉 1 个节点(leader 可以得到 2 票>1.5)

  • 2 个节点的 cluster 就不能挂掉任何 1 个节点了(leader 可以得到 1 票<=1)

zookeeper 负载均衡和 nginx 负载均衡区别
  • zk 的负载均衡是可以调控,nginx 只是能调权重,其他需要可控的都需要自己写插件;但是 nginx 的吞吐量比 zk 大很多,应该说按业务选择用哪种方式。

Zookeeper 有哪几种几种部署模式?
  • Zookeeper 有三种部署模式:单机部署:一台集群上运行;

    • 集群部署:多台集群运行;

    • 伪集群部署:一台集群启动多个 Zookeeper 实例运行。

集群最少要几台机器,集群规则是怎样的?集群中有 3 台服务器,其中一个节点宕机,这个时候 Zookeeper 还可以使用吗?
  • 集群规则为 2N+1 台,N>0,即 3 台。可以继续使用,单数服务器只要没超过一半的服务器宕机就可以继续使用。

集群支持动态添加机器吗?
  • 其实就是水平扩容了,Zookeeper 在这方面不太好。两种方式:

  • 全部重启:关闭所有 Zookeeper 服务,修改配置之后启动。不影响之前客户端的会话。

  • 逐个重启:在过半存活即可用的原则下,一台机器重启不影响整个集群对外提供服务。这是比较常用的方式。

  • 3.5 版本开始支持动态扩容。

Zookeeper 对节点的 watch 监听通知是永久的吗?为什么不是永久的?
  • 不是。官方声明:一个 Watch 事件是一个一次性的触发器,当被设置了 Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了 Watch 的客户端,以便通知它们。

  • 为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,给网络和服务器造成很大压力。

  • 一般是客户端执行 getData(“/节点 A”,true),如果节点 A 发生了变更或删除,客户端会得到它的 watch 事件,但是在之后节点 A 又发生了变更,而客户端又没有设置 watch 事件,就不再给客户端发送。

  • 在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。

Zookeeper 的 java 客户端都有哪些?
  • java 客户端:zk 自带的 zkclient 及 Apache 开源的 Curator。


chubby 是什么,和 zookeeper 比你怎么看?
  • chubby 是 google 的,完全实现 paxos 算法,不开源。zookeeper 是 chubby的开源实现,使用 zab 协议,paxos 算法的变种。

说几个 zookeeper 常用的命令。
  • 常用命令:ls get set create delete 等。


说一下两阶段提交和三阶段提交的过程?分别有什么问题?

两阶段提交协议 2PC


1. 第一阶段(投票阶段):

(1)协调者节点向所有参与者节点询问是否可以执行提交操作(vote),并开始等待各参与者节点的响应;

(2)参与者节点执行询问发起为止的所有事务操作,并将Undo信息和Redo信息写入日志。(3)各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,则它返回一个”同意”消息;如果参与者节点的事务操作实际执行失败,则它返回一个”中止”消息。


2. 第二阶段(提交执行阶段):

 当协调者节点从所有参与者节点获得的相应消息都为”同意”时:

(1)协调者节点向所有参与者节点发出”正式提交(commit)”的请求;

(2)参与者节点正式完成操作,并释放在整个事务期间内占用的资源;

(3)参与者节点向协调者节点发送”完成”消息;

(4)协调者节点受到所有参与者节点反馈的”完成”消息后,完成事务。



两阶段提交存在的问题:

1. 执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态;

2. 参与者发生故障:协调者需要给每个参与者额外指定超时机制,超时后整个事务失败;

3. 协调者发生故障:参与者会一直阻塞下去。需要额外的备机进行容错;

4. 二阶段无法解决的问题:协调者再发出 commit 消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。



三阶段提交协议 3PC


与两阶段提交不同的是,三阶段提交有两个改动点:

1. 引入超时机制。同时在协调者和参与者中都引入超时机制;

2. 在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的。

也就是说,除了引入超时机制之外,3PC 把 2PC 的准备阶段再次一分为二,这样三阶段提交就有 CanCommit、PreCommit、DoCommit 三个阶段。

1. CanCommit 阶段3PC 的 CanCommit 阶段其实和 2PC 的准备阶段很像。协调者向参与者发送 commit 请求,参与者如果可以提交就返回 Yes 响应,否则返回 No 响应。

(1)事务询问:协调者向参与者发送 CanCommit 请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。

(2)响应反馈:参与者接到 CanCommit 请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回 Yes 响应,并进入预备状态。否则反馈 No。

2. PreCommit 阶段协调者根据参与者的反应情况来决定是否可以继续事务的 PreCommit 操作。根据响应情况,有以下两种可能:

假如协调者从所有的参与者获得的反馈都是 Yes 响应,那么就会执行事务的预执行。

(1)发送预提交请求:协调者向参与者发送 PreCommit 请求,并进入 Prepared 阶段。

(2)事务预提交:参与者接收到 PreCommit 请求后,会执行事务操作,并将 undo 和 redo 信息记录到事务日志中。(3)响应反馈:如果参与者成功的执行了事务操作,则返回 ACK 响应,同时开始等待最终指令。

假如有任何一个参与者向协调者发送了 No 响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。(1)发送中断请求:协调者向所有参与者发送 abort 请求。(2)中断事务:参与者收到来自协调者的 abort 请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。

3. doCommit 阶段该阶段进行真正的事务提交,也可以分为以下两种情况。


3.1 执行提交

(1)发送提交请求:协调接收到参与者发送的 ACK 响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送 doCommit 请求。

(2)事务提交:参与者接收到 doCommit 请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。

(3)响应反馈:事务提交完之后,向协调者发送 ACK 响应。

(4)完成事务:协调者接收到所有参与者的 ACK 响应之后,完成事务。


3.2 中断事务

协调者没有接收到参与者发送的 ACK 响应(可能是接受者发送的不是 ACK 响应,也可能响应超时),那么就会执行中断事务。

(1)发送中断请求:协调者向所有参与者发送 abort 请求。

(2)事务回滚:参与者接收到 abort 请求之后,利用其在阶段二记录的 undo 信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。

(3)反馈结果:参与者完成事务回滚之后,向协调者发送 ACK 消息。

(4)中断事务:协调者接收到参与者反馈的 ACK 消息之后,执行事务的中断。


三阶段提交的问题:

网络分区可能会带来问题。需要四阶段解决:四阶段直接调用远程服务的数据状态,确定当前数据一致性的情况。






谈下你对 ZAB 协议的了解?

ZAB 协议是为分布式协调服务 Zookeeper 专门设计的一种支持崩溃恢复的原子广播协议。ZAB 协议包括两种基本的模式:崩溃恢复和消息广播。

当整个 Zookeeper 集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与 Leader 服务器保持正常通信时,所有服务器进入崩溃恢复模式,首先选举产生新的 Leader 服务器,然后集群中 Follower 服务器开始与新的 Leader 服务器进行数据同步。当集群中超过半数机器与该 Leader 服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader 服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。




Zookeeper工作原理

Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。


ZAB 和 Paxos 算法的联系与区别?
  • 相同点:

(1)两者都存在一个类似于 Leader 进程的角色,由其负责协调多个 Follower 进程的运行

(2)Leader 进程都会等待超过半数的 Follower 做出正确的反馈后,才会将一个提案进行提交

(3)ZAB 协议中,每个 Proposal 中都包含一个 epoch 值来代表当前的 Leader周期,Paxos 中名字为 Ballot

  • 不同点:

ZAB 用来构建高可用的分布式数据主备系统(Zookeeper),Paxos 是用来构建分布式一致性状态机系统。


Zookeeper 的典型应用场景
  • Zookeeper 是一个典型的发布/订阅模式的分布式数据管理与协调框架,开发人员可以使用它来进行分布式数据的发布和订阅。

  • 通过对 Zookeeper 中丰富的数据节点进行交叉使用,配合 Watcher 事件通知机制,可以非常方便的构建一系列分布式应用中年都会涉及的核心功能,如:

(1)数据发布/订阅

(2)负载均衡

(3)命名服务

(4)分布式协调/通知

(5)集群管理

(6)Master 选举

(7)分布式锁

(8)分布式队列


1 数据发布/订阅

介绍

  • 数据发布/订阅系统,即所谓的配置中心,顾名思义就是发布者发布数据供订阅者进行数据订阅。

目的

  • 动态获取数据(配置信息)

  • 实现数据(配置信息)的集中式管理和数据的动态更新

设计模式

  • Push 模式

  • Pull 模式

数据(配置信息)特性

(1)数据量通常比较小(2)数据内容在运行时会发生动态更新(3)集群中各机器共享,配置一致

  • 如:机器列表信息、运行时开关配置、数据库配置信息等

基于 Zookeeper 的实现方式

  • · 数据存储:将数据(配置信息)存储到 Zookeeper 上的一个数据节点

  • · 数据获取:应用在启动初始化节点从 Zookeeper 数据节点读取数据,并在该节点上注册一个数据变更 Watcher

  • · 数据变更:当变更数据时,更新 Zookeeper 对应节点数据,Zookeeper会将数据变更通知发到各客户端,客户端接到通知后重新读取变更后的数据即可。



2 负载均衡

  • zk 的命名服务

分布式通知和协调

  • 对于系统调度来说:操作人员发送通知实际是通过控制台改变某个节点的状态,然后 zk 将这些变化发送给注册了这个节点的 watcher 的所有客户端。

  • 对于执行情况汇报:每个工作进程都在某个目录下创建一个临时节点。并携带工作的进度数据,这样汇总的进程可以监控目录子节点的变化获得工作进度的实时的全局情况。

zk 的命名服务(文件系统)

zk 的配置管理(文件系统、通知机制)

  • 程序分布式的部署在不同的机器上,将程序的配置信息放在 zk 的 znode 下,当有配置发生改变时,也就是 znode 发生变化时,可以通过改变 zk 中某个目录节点的内容,利用 watcher 通知给各个客户端,从而更改配置。

Zookeeper 集群管理(文件系统、通知机制)

  • 所谓集群管理无在乎两点:是否有机器退出和加入、选举 master。

  • 对于第一点,所有机器约定在父目录下创建临时目录节点,然后监听父目录节点

  • 的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper 的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它上船了。

  • 新机器加入也是类似,所有机器收到通知:新兄弟目录加入,highcount 又有了,对于第二点,我们稍微改变一下,所有机器创建临时顺序编号目录节点,每次选取编号最小的机器作为 master 就好。

Zookeeper 分布式锁(文件系统、通知机制)

  • 有了 zookeeper 的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。

  • 对于第一类,我们将 zookeeper 上的一个 znode 看作是一把锁,通过 create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。用完删除掉自己创建的 distribute_lock 节点就释放出锁。

  • 对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选 master 一样,编号最小的获得锁,用完删除,依次方便。

Zookeeper 队列管理(文件系统、通知机制)

  • 两种类型的队列:

(1)同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。(2)队列按照 FIFO 方式进行入队和出队操作。

  • 第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。

  • 第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。在特定的目录下创建 PERSISTENT_SEQUENTIAL 节点,创建成功时Watcher 通知等待的队列,队列删除序列号最小的节点用以消费。此场景下Zookeeper 的 znode 用于消息存储,znode 存储的数据就是消息队列中的消息内容,SEQUENTIAL 序列号就是消息的编号,按序取出即可。由于创建的节点是持久化的,所以不必担心队列消息的丢失问题。

Zookeeper 都有哪些功能?
  1. 集群管理:监控节点存活状态、运行请求等;

  2. 主节点选举:主节点挂掉了之后可以从备用的节点开始新一轮选主,主节点选举说的就是这个选举的过程,使用 Zookeeper 可以协助完成这个过程;

  3. 分布式锁:Zookeeper 提供两种锁:独占锁、共享锁。独占锁即一次只能有一个线程使用资源,共享锁是读锁共享,读写互斥,即可以有多线线程同时读同一个资源,如果要使用写锁也只能有一个线程使用。Zookeeper 可以对分布式锁进行控制。

说一下 Zookeeper 的通知机制?
  • client 端会对某个 znode 建立一个 watcher 事件,当该 znode 发生变化时,这些 client 会收到 zk 的通知,然后 client 可以根据 znode 变化来做出业务上的改变等。

Zookeeper 和 Dubbo 的关系?
  • dubbo:是管理中间层的工具,在业务层到数据仓库间有非常多服务的接入和服务提供者需要调度,dubbo提供一个框架解决这个问题。

注意这里的dubbo只是一个框架,至于你架子上放什么是完全取决于你的,就像一个汽车骨架,你需要配你的轮子引擎。这个框架中要完成调度必须要有一个分布式的注册中心,储存所有服务的元数据,你可以用zk,也可以用别的,只是大家都用zk。

  • zookeeper和dubbo的关系:Dubbo 的将注册中心进行抽象,它可以外接不同的存储媒介给注册中心提供服务,有 ZooKeeper,Memcached,Redis 等。


《程序猿面试题系列》之大厂常见Zookeeper面试题<3>


Leader 选举

 zookeeper是如何选取主leader的


当leader崩溃或者leader失去大多数的follower,这时zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。


1、Zookeeper选主流程(basic paxos)


1.选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;


2.选举线程首先向所有Server发起一次询问(包括自己);


3.选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;


4.收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;


5.线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数,设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1. 每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。


2、Zookeeper选主流程(basic paxos)


fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和 zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。

《程序猿面试题系列》之大厂常见Zookeeper面试题<3>


zookeeper是如何保证事务的顺序一致性的?

zookeeper采用了全局递增的事务Id来标识,所有的proposal(提议)都在被提出的时候加上了zxid,zxid实际上是一个64位的数字,高32位是epoch(时期; 纪元; 世; 新时代)用来标识leader周期,如果有新的leader产生出来,epoch会自增,低32位用来递增计数。当新产生proposal的时候,会依据数据库的两阶段过程,首先会向其他的server发出事务执行请求,如果超过半数的机器都能执行并且能够成功,那么就会开始执行。



Zookeeper分布式锁(文件系统、通知机制)

有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。用完删除掉自己创建的distribute_lock 节点就释放出锁。对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次获取。


获取分布式锁的流程

在获取分布式锁的时候在locker节点下创建临时顺序节点,释放锁的时候删除该临时节点。客户端调用createNode方法在locker下创建临时顺序节点,然后调用getChildren(“locker”)来获取locker下面的所有子节点,注意此时不用设置任何Watcher。客户端获取到所有的子节点path之后,如果发现自己创建的节点在所有创建的子节点序号最小,那么就认为该客户端获取到了锁。如果发现自己创建的节点并非locker所有子节点中最小的,说明自己还没有获取到锁,此时客户端需要找到比自己小的那个节点,然后对其调用exist()方法,同时对其注册事件监听器。之后,让这个被关注的节点删除,则客户端的Watcher会收到相应通知,此时再次判断自己创建的节点是否是locker子节点中序号最小的,如果是则获取到了锁,如果不是则重复以上步骤继续获取到比自己小的一个节点并注册监听。当前这个过程中还需要许多的逻辑判断。

代码的实现主要是基于互斥锁,获取分布式锁的重点逻辑在于BaseDistributedLock,实现了基于Zookeeper实现分布式锁的细节。


Zookeeper队列管理(文件系统、通知机制)

两种类型的队列:1、同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。2、队列按照 FIFO 方式进行入队和出队操作。第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。在特定的目录下创建PERSISTENT_SEQUENTIAL节点,创建成功时Watcher通知等待的队列,队列删除序列号最小的节点用以消费。此场景下Zookeeper的znode用于消息存储,znode存储的数据就是消息队列中的消息内容,SEQUENTIAL序列号就是消息的编号,按序取出即可。由于创建的节点是持久化的,所以不必担心队列消息的丢失问题。


- THE END -

作者简介

Mr.W

白天搬砖,晚上砌梦想。

相信每个人有故事,程序员更是有许多事故,书写最接地气的程序员故事,为大家找出更好的资料。