vlambda博客
学习文章列表

一张900w的数据表,16s执行的SQL优化到300ms?

做积极的人,而不是积极废人!

每天 14:00 更新文章,每天掉亿点点头发...

源码精品专栏

 




有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);

操作: 查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段;

原理: 减少回表操作;

-- 优化前SQL
SELECT  各种字段
FROM `table_name`
WHERE 各种条件
LIMIT 0,10;
-- 优化后SQL
SELECT  各种字段
FROM `table_name` main_tale
RIGHT JOIN
(
SELECT  子查询只查主键
FROM `table_name`
WHERE 各种条件
LIMIT 0,10;
) temp_table ON temp_table.主键 = main_table.主键

找到的原理分析:MySQL 用 limit 为什么会影响性能?

首先说明一下MySQL的版本:

mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.17    |
+-----------+
1 row in set (0.00 sec)

表结构:

mysql> desc test;
+--------+---------------------+------+-----+---------+----------------+
| Field  | Type                | Null | Key | Default | Extra          |
+--------+---------------------+------+-----+---------+----------------+
| id     | bigint(20) unsigned | NO   | PRI | NULL    | auto_increment |
| val    | int(10) unsigned    | NO   | MUL | 0       |                |
| source | int(10) unsigned    | NO   |     | 0       |                |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

id为自增主键,val为非唯一索引。

灌入大量数据,共500万:

mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
|  5242882 |
+----------+
1 row in set (4.25 sec)

我们知道,当limit offset rows中的offset很大时,会出现效率问题:

mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+
| 3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (15.98 sec)

为了达到相同的目的,我们一般会改写成如下语句:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)

时间相差很明显。

为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:

查询到索引叶子节点数据。根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。

类似于下面这张图:

像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。

肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:

其实我也想问这个问题。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能。

下面我们实际操作一下来证实上述的推论:

为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。

我只能通过间接的方式来证实:

InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。

select * from test where val=4 limit 300000,5
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary'and TABLE_NAME like '%test%' group by index_name;Empty set (0.04 sec)

可以看出,目前buffer pool中没有关于test表的数据页。

mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+|
3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (26.19 sec)

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary'and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |     4098 |
| val        |      208 |
+------------+----------+2 rows in set (0.04 sec)

可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。

select * from test a inner join (select id from test where val=4 limit 300000,5) ;为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。

mysqladmin shutdown
/usr/local/bin/mysqld_safe &
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary'and TABLE_NAME like '%test%' group by index_name;

Empty set (0.03 sec)

运行sql:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.09 sec)

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary'and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |        5 |
| val        |      390 |
+------------+----------+
2 rows in set (0.03 sec)

我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。 遇到的问题

为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。

基于微服务的思想,构建在 B2C 电商场景下的项目实战。核心技术栈,是 Spring Boot + Dubbo 。未来,会重构成 Spring Cloud Alibaba 。

1.https://explainextended.com/2009/10/23/mysql-order-by-limit-performance-late-row-lookups/

2.https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-buffer-pool-tables.html



已在知识星球更新源码解析如下:

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 6W 行代码的电商微服务项目。

文章有帮助的话,在看,转发吧。

谢谢支持哟 (*^__^*)