数据结构--贪心算法、分治算法
01
贪心算法思想
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。
贪心算法有很多经典的应用,比如霍夫曼编码(Huffman Coding)、Prim 和 Kruskal 最小生成树算法、还有 Dijkstra 单源最短路径算法。
假设我们有一个可以容纳 100kg 物品的背包,可以装各种物品。我们有以下 5 种豆子,每种豆子的总量和总价值都各不相同。为了让背包中所装物品的总价值最大,我们如何选择在背包中装哪些豆子?每种豆子又该装多少呢?
实际上,这个问题很简单,估计你一下子就能想出来,没错,我们只要先算一算每个物品的单价,按照单价由高到低依次来装就好了。单价从高到低排列,依次是:黑豆、绿豆、红豆、青豆、黄豆,所以,我们可以往背包里装 20kg 黑豆、30kg 绿豆、50kg 红豆。
这个问题的解决思路显而易见,它本质上借助的就是贪心算法。结合这个例子,总结一下贪心算法解决问题的步骤:
第一步,当我们看到这类问题的时候,首先要联想到贪心算法:针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。
类比到刚刚的例子,限制值就是重量不能超过 100kg,期望值就是物品的总价值。这组数据就是 5 种豆子。我们从中选出一部分,满足重量不超过 100kg,并且总价值最大。
第二步,我们尝试看下这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。
类比到刚刚的例子,我们每次都从剩下的豆子里面,选择单价最高的,也就是重量相同的情况下,对价值贡献最大的豆子。
第三步,举几个例子看下贪心算法产生的结果是否是最优的。大部分情况下,举几个例子验证一下就可以了。严格地证明贪心算法的正确性,是非常复杂的,需要涉及比较多的数学推理。而且,从实践的角度来说,大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明。
实际上,用贪心算法解决问题的思路,并不总能给出最优解。
例如在一个有权图中,我们从顶点 S 开始,找一条到顶点 T 的最短路径(路径中边的权值和最小)。贪心算法的解决思路是,每次都选择一条跟当前顶点相连的权最小的边,直到找到顶点 T。按照这种思路,我们求出的最短路径是 S->A->E->T,路径长度是 1+4+4=9。
但是,这种贪心的选择方式,最终求的路径并不是最短路径,因为路径 S->B->D->T 才是最短路径,因为这条路径的长度是 2+2+2=6。为什么贪心算法在这个问题上不工作了呢?
在这个问题上,贪心算法不工作的主要原因是,前面的选择,会影响后面的选择。如果我们第一步从顶点 S 走到顶点 A,那接下来面对的顶点和边,跟第一步从顶点 S 走到顶点 B,是完全不同的。所以,即便我们第一步选择最优的走法(边最短),但有可能因为这一步选择,导致后面每一步的选择都很糟糕,最终也就无缘全局最优解了。
贪心算法实战分析
1. 分糖果
我们有 m 个糖果和 n 个孩子。我们现在要把糖果分给这些孩子吃,一个孩子最多一个糖果,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。
每个糖果的大小不等,这 m 个糖果的大小分别是 s1,s2,s3,……,sm。除此之外,每个孩子对糖果大小的需求也是不一样的,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这 n 个孩子对糖果大小的需求分别是 g1,g2,g3,……,gn。
问题是,如何分配糖果,能尽可能满足最多数量的孩子?
我们可以把这个问题抽象成,从 n 个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数 m。
我们现在来看看如何用贪心算法来解决。对于一个孩子来说,如果小的糖果可以满足,我们就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,我们可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对我们期望值的贡献是一样的。
我们每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。
2. 钱币找零
假设我们有 1 元、2 元、5 元、10 元、20 元、50 元、100 元这些面额的纸币,它们的张数分别是 c1、c2、c5、c10、c20、c50、c100。我们现在要用这些钱来支付 K 元,最少要用多少张纸币?
在生活中,我们肯定是先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用 1 元来补齐。
在贡献相同期望值(纸币数目)的情况下,我们希望多贡献点金额,这样就可以让纸币数更少,这就是一种贪心算法的解决思路。直觉告诉我们,这种处理方法就是最好的。实际上,要严谨地证明这种贪心算法的正确性,需要比较复杂的、有技巧的数学推导,不建议你花太多时间在上面,不过如果感兴趣的话,可以自己去研究下。
3. 区间覆盖
假设我们有 n 个区间,区间的起始端点和结束端点分别是 [l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。我们从这 n 个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢
这个问题的解决思路是这样的:我们假设这 n 个区间中最左端点是 lmin,最右端点是 rmax。这个问题就相当于,我们选择几个不相交的区间,从左到右将 [lmin, rmax] 覆盖上。我们按照起始端点从小到大的顺序对这 n 个区间排序。
我们每次选择的时候,左端点跟前面的已经覆盖的区间不重合的,右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。
用贪心算法实现霍夫曼编码
假设我有一个包含 1000 个字符的文件,每个字符占 1 个 byte(1byte=8bits,1个字节是8位),存储这 1000 个字符就一共需要 8000bits,那有没有更加节省空间的存储方式呢?
假设我们通过统计分析发现,这 1000 个字符中只包含 6 种不同字符,假设它们分别是 a、b、c、d、e、f。而 3 个二进制位(bit)就可以表示 8 个不同的字符,所以,为了尽量减少存储空间,每个字符我们用 3 个二进制位来表示。那存储这 1000 个字符只需要 3000bits 就可以了,比原来的存储方式节省了很多空间。不过,还有没有更加节省空间的存储方式呢?
a(000)、b(001)、c(010)、d(011)、e(100)、f(101)
霍夫曼编码就要登场了。霍夫曼编码是一种十分有效的编码方法,广泛用于数据压缩中,其压缩率通常在 20%~90% 之间。
霍夫曼编码不仅会考察文本中有多少个不同字符,还会考察每个字符出现的频率,根据频率的不同,选择不同长度的编码。霍夫曼编码试图用这种不等长的编码方法,来进一步增加压缩的效率。如何给不同频率的字符选择不同长度的编码呢?根据贪心的思想,我们可以把出现频率比较多的字符,用稍微短一些的编码;出现频率比较少的字符,用稍微长一些的编码。
对于等长的编码来说,我们解压缩起来很简单。比如刚才那个例子中,我们用 3 个 bit 表示一个字符。在解压缩的时候,我们每次从文本中读取 3 位二进制码,然后翻译成对应的字符。但是,霍夫曼编码是不等长的,每次应该读取 1 位还是 2 位、3 位等等来解压缩呢?这个问题就导致霍夫曼编码解压缩起来比较复杂。为了避免解压缩过程中的歧义,霍夫曼编码要求各个字符的编码之间,不会出现某个编码是另一个编码前缀的情况。
假设这 6 个字符出现的频率从高到低依次是 a、b、c、d、e、f。我们把它们编码下面这个样子,任何一个字符的编码都不是另一个的前缀,在解压缩的时候,我们每次会读取尽可能长的可解压的二进制串,所以在解压缩的时候也不会歧义。经过这种编码压缩之后,这 1000 个字符只需要 2100bits 就可以了。
尽管霍夫曼编码的思想并不难理解,但是如何根据字符出现频率的不同,给不同的字符进行不同长度的编码呢?这里的处理稍微有些技巧。
我们把每个字符看作一个节点,并且辅带着把频率放到优先级队列中。我们从队列中取出频率最小的两个节点 A、B,然后新建一个节点 C,把频率设置为两个节点的频率之和,并把这个新节点 C 作为节点 A、B 的父节点。最后再把 C 节点放入到优先级队列中。重复这个过程,直到队列中没有数据。
现在,我们给每一条边加上画一个权值,指向左子节点的边我们统统标记为 0,指向右子节点的边,我们统统标记为 1,那从根节点到叶节点的路径就是叶节点对应字符的霍夫曼编码。
02
分治算法
分治算法(divide and conquer)的核心思想其实就是四个字,分而治之 ,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。
这个定义看起来有点类似递归的定义。关于分治和递归的区别:分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:
分解:将原问题分解成一系列子问题;
解决:递归地求解各个子问题,若子问题足够小,则直接求解;
合并:将子问题的结果合并成原问题。
分治算法能解决的问题,一般需要满足下面这几个条件:
原问题与分解成的小问题具有相同的模式;
原问题分解成的子问题可以独立求解,子问题之间没有相关性;
具有分解终止条件,也就是说,当问题足够小时,可以直接求解;
可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。
ps:
有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:
有序元素对:a[i] <= a[j], 如果 i < j。
对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度。
逆序度的定义正好跟有序度相反(默认从小到大为有序):
逆序元素对:a[i] > a[j], 如果 i < j。
逆序度 = 满有序度 - 有序度
分治算法应用举例分析
假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n(n-1)/2。除了这两种极端情况外,我们通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。
那么如何编程求出一组数据的有序对个数或者逆序对个数呢?
最笨的方法是,拿每个数字跟它后面的数字比较,看有几个比它小的。我们把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和,最后得到的总和就是逆序对个数。不过,这样操作的时间复杂度是 O(n^2)。
可以用分治算法来试试。我们套用分治的思想来求数组 A 的逆序对个数。我们可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2,然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。
前面讲过,使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。那回到这个问题,如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?
这里就要借助归并排序算法了。归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,我们就可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。
private int num = 0; // 全局变量或者成员变量
public int count(int[] a, int n) {
num = 0;
mergeSortCounting(a, 0, n-1);
return num;
}
private void mergeSortCounting(int[] a, int p, int r) {
if (p >= r) return;
int q = (p+r)/2;
mergeSortCounting(a, p, q);
mergeSortCounting(a, q+1, r);
merge(a, p, q, r);
}
private void merge(int[] a, int p, int q, int r) {
int i = p, j = q+1, k = 0;
int[] tmp = new int[r-p+1];
while (i<=q && j<=r) {
if (a[i] <= a[j]) {
tmp[k++] = a[i++];
} else {
num += (q-i+1); // 统计 p-q 之间,比 a[j] 大的元素个数
tmp[k++] = a[j++];
}
}
while (i <= q) { // 处理剩下的
tmp[k++] = a[i++];
}
while (j <= r) { // 处理剩下的
tmp[k++] = a[j++];
}
for (i = 0; i <= r-p; ++i) { // 从 tmp 拷贝回 a
a[p+i] = tmp[i];
}
}
分治思想在海量数据处理中的应用
数据结构和算法,大部分都是基于内存存储和单机处理。但是,如果要处理的数据量非常大,没法一次性放到内存中,这个时候,这些数据结构和算法就无法工作了。
比如,给 10GB 的订单文件按照金额排序这样一个需求,看似是一个简单的排序问题,但是因为数据量大,有 10GB,而我们的机器的内存可能只有 2、3GB 这样子,无法一次性加载到内存,也就无法通过单纯地使用快排、归并等基础算法来解决了。
要解决这种数据量大到内存装不下的问题,我们就可以利用分治的思想。我们可以将海量的数据集合根据某种方法,划分为几个小的数据集合,每个小的数据集合单独加载到内存来解决,然后再将小数据集合合并成大数据集合。实际上,利用这种分治的处理思路,不仅仅能克服内存的限制,还能利用多线程或者多机处理,加快处理的速度。
比如刚刚举的那个例子,给 10GB 的订单排序,我们就可以先扫描一遍订单,根据订单的金额,将 10GB 的文件划分为几个金额区间。比如订单金额为 1 到 100 元的放到一个小文件,101 到 200 之间的放到另一个文件,以此类推。这样每个小文件都可以单独加载到内存排序,最后将这些有序的小文件合并,就是最终有序的 10GB 订单数据了。
如果订单数据存储在类似 GFS 这样的分布式系统上,当 10GB 的订单被划分成多个小文件的时候,每个文件可以并行加载到多台机器上处理,最后再将结果合并在一起,这样并行处理的速度也加快了很多。不过,这里有一个点要注意,就是数据的存储与计算所在的机器是同一个或者在网络中靠的很近(比如一个局域网内,数据存取速度很快),否则就会因为数据访问的速度,导致整个处理过程不但不会变快,反而有可能变慢。
为什么说 MapReduce 的本质就是分治思想?
刚刚举的订单的例子,数据有 10GB 大小,可能给你的感受还不强烈。那如果我们要处理的数据是 1T、10T、100T 这样子的,那一台机器处理的效率肯定是非常低的。而对于谷歌搜索引擎来说,网页爬取、清洗、分析、分词、计算权重、倒排索引等等各个环节中,都会面对如此海量的数据(比如网页)。所以,利用集群并行处理显然是大势所趋。
一台机器过于低效,那我们就把任务拆分到多台机器上来处理。如果拆分之后的小任务之间互不干扰,独立计算,最后再将结果合并。这不就是分治思想吗?
实际上,MapReduce 框架只是一个任务调度器,底层依赖 GFS 来存储数据,依赖 Borg 管理机器。它从 GFS 中拿数据,交给 Borg 中的机器执行,并且时刻监控机器执行的进度,一旦出现机器宕机、进度卡壳等,就重新从 Borg 中调度一台机器执行。
尽管 MapReduce 的模型非常简单,但是在 Google 内部应用非常广泛。它除了可以用来处理这种数据与数据之间存在关系的任务,比如 MapReduce 的经典例子,统计文件中单词出现的频率。除此之外,它还可以用来处理数据与数据之间没有关系的任务,比如对网页分析、分词等,每个网页可以独立的分析、分词,而这两个网页之间并没有关系。网页几十亿、上百亿,如果单机处理,效率低下,我们就可以利用 MapReduce 提供的高可靠、高性能、高容错的并行计算框架,并行地处理这几十亿、上百亿的网页。