P0级重大事故:Redis 分布式锁使用不当,超卖了100瓶飞天茅台!
基于 Redis 使用分布式锁在当今已经不是什么新鲜事了。本篇文章主要是基于我们实际项目中因为 Redis 分布式锁造成的事故分析及解决方案。
图片来自 Pexels
前言
我们项目中的抢购订单采用的是分布式锁来解决的。有一次,运营做了一个飞天茅台的抢购活动,库存 100 瓶,但是却超卖了!
要知道,这个地球上飞天茅台的稀缺性啊!!!事故定为 P0 级重大事故...只能坦然接受。整个项目组被扣绩效了~~
事故发生后,CTO 指名点姓让我带头冲锋来处理,好吧,冲~
事故现场
经过一番了解后,得知这个抢购活动接口以前从来没有出现过这种情况,但是这次为什么会超卖呢?
原因在于:之前的抢购商品都不是什么稀缺性商品,而这次活动居然是飞天茅台,通过埋点数据分析,各项数据基本都是成倍增长,活动热烈程度可想而知!
public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
String key = "key:" + request.getSeckillId;
try {
Boolean lockFlag = redisTemplate.opsForValue().setIfAbsent(key, "val", 10, TimeUnit.SECONDS);
if (lockFlag) {
// HTTP请求用户服务进行用户相关的校验
// 用户活动校验
// 库存校验
Object stock = redisTemplate.opsForHash().get(key+":info", "stock");
assert stock != null;
if (Integer.parseInt(stock.toString()) <= 0) {
// 业务异常
} else {
redisTemplate.opsForHash().increment(key+":info", "stock", -1);
// 生成订单
// 发布订单创建成功事件
// 构建响应VO
}
}
} finally {
// 释放锁
stringRedisTemplate.delete("key");
// 构建响应VO
}
return response;
}
以上代码,通过分布式锁过期时间有效期 10s 来保障业务逻辑有足够的执行时间;采用 try-finally 语句块保证锁一定会及时释放。
事故原因
飞天茅台抢购活动吸引了大量新用户下载注册我们的 APP,其中,不乏很多羊毛党,采用专业的手段来注册新用户来薅羊毛和刷单。
当然我们的用户系统提前做好了防备,接入阿里云人机验证、三要素认证以及自研的风控系统等各种十八般武艺,挡住了大量的非法用户。
此处不禁点个赞,但也正因如此,让用户服务一直处于较高的运行负载中。
抢购活动开始的一瞬间,大量的用户校验请求打到了用户服务。
导致用户服务网关出现了短暂的响应延迟,有些请求的响应时长超过了 10s,但由于 HTTP 请求的响应超时我们设置的是 30s。
这就导致接口一直阻塞在用户校验那里,10s 后,分布式锁已经失效了,此时有新的请求进来是可以拿到锁的,也就是说锁被覆盖了。
这些阻塞的接口执行完之后,又会执行释放锁的逻辑,这就把其他线程的锁释放了,导致新的请求也可以竞争到锁~这真是一个极其恶劣的循环。
这个时候只能依赖库存校验,但是偏偏库存校验不是非原子性的,采用的是 get and compare 的方式,超卖的悲剧就这样发生了~~~
事故分析
仔细分析下来,可以发现,这个抢购接口在高并发场景下,是有严重的安全隐患的,主要集中在三个地方:
①没有其他系统风险容错处理
由于用户服务吃紧,网关响应延迟,但没有任何应对方式,这是超卖的导火索。
②看似安全的分布式锁其实一点都不安全
虽然采用了 set key value [EX seconds] [PX milliseconds] [NX|XX]的方式,但是如果线程 A 执行的时间较长没有来得及释放,锁就过期了,此时线程 B 是可以获取到锁的。
当线程 A 执行完成之后,释放锁,实际上就把线程 B 的锁释放掉了。这个时候,线程 C 又是可以获取到锁的,而此时如果线程 B 执行完释放锁实际上就是释放的线程 C 设置的锁。这是超卖的直接原因。
③非原子性的库存校验
非原子性的库存校验导致在并发场景下,库存校验的结果不准确。这是超卖的根本原因。
通过以上分析,问题的根本原因在于库存校验严重依赖了分布式锁。因为在分布式锁正常 set、del 的情况下,库存校验是没有问题的。
解决方案
知道了原因之后,我们就可以对症下药了。
实现相对安全的分布式锁
相对安全的定义:set、del 是一一映射的,不会出现把其他现成的锁 del 的情况。
从实际情况的角度来看,即使能做到 set、del一一映射,也无法保障业务的绝对安全。
因为锁的过期时间始终是有界的,除非不设置过期时间或者把过期时间设置的很长,但这样做也会带来其他问题。故没有意义。
要想实现相对安全的分布式锁,必须依赖 key 的 value 值。在释放锁的时候,通过 value 值的唯一性来保证不会勿删。
public void safedUnLock(String key, String val) {
String luaScript = "local in = ARGV[1] local curr=redis.call('get', KEYS[1]) if in==curr then redis.call('del', KEYS[1]) end return 'OK'"";
RedisScript<String> redisScript = RedisScript.of(luaScript);
redisTemplate.execute(redisScript, Collections.singletonList(key), Collections.singleton(val));
}
我们通过 LUA 脚本来实现安全地解锁。
实现安全的库存校验
如果我们对于并发有比较深入的了解的话,会发现想 get and compare/ read and save 等操作,都是非原子性的。如果要实现原子性,我们也可以借助 LUA 脚本来实现。
但就我们这个例子中,由于抢购活动一单只能下 1 瓶,因此可以不用基于 LUA 脚本实现而是基于 Redis 本身的原子性。
// redis会返回操作之后的结果,这个过程是原子性的
Long currStock = redisTemplate.opsForHash().increment("key", "stock", -1);
发现没有,代码中的库存校验完全是“画蛇添足”。
改进之后的代码
经过以上的分析之后,我们决定新建一个 DistributedLocker 类专门用于处理分布式锁:
public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
String key = "key:" + request.getSeckillId();
String val = UUID.randomUUID().toString();
try {
Boolean lockFlag = distributedLocker.lock(key, val, 10, TimeUnit.SECONDS);
if (!lockFlag) {
// 业务异常
}
// 用户活动校验
// 库存校验,基于redis本身的原子性来保证
Long currStock = stringRedisTemplate.opsForHash().increment(key + ":info", "stock", -1);
if (currStock < 0) { // 说明库存已经扣减完了。
// 业务异常。
log.error("[抢购下单] 无库存");
} else {
// 生成订单
// 发布订单创建成功事件
// 构建响应
}
} finally {
distributedLocker.safedUnLock(key, val);
// 构建响应
}
return response;
}
深度思考
①分布式锁有必要么
改进之后,其实可以发现,我们借助于 Redis 本身的原子性扣减库存,也是可以保证不会超卖的。
对的。但是如果没有这一层锁的话,那么所有请求进来都会走一遍业务逻辑,由于依赖了其他系统,此时就会造成对其他系统的压力增大。
这会增加的性能损耗和服务不稳定性,得不偿失。基于分布式锁可以在一定程度上拦截一些流量。
②分布式锁的选型
有人提出用 RedLock 来实现分布式锁。RedLock 的可靠性更高,但其代价是牺牲一定的性能。
在本场景,这点可靠性的提升远不如性能的提升带来的性价比高。如果对于可靠性极高要求的场景,则可以采用 RedLock 来实现。
③再次思考分布式锁有必要么
由于 Bug 需要紧急修复上线,因此我们将其优化并在测试环境进行了压测之后,就立马热部署上线了。
实际证明,这个优化是成功的,性能方面略微提升了一些,并在分布式锁失效的情况下,没有出现超卖的情况。
然而,还有没有优化空间呢?有的!由于服务是集群部署,我们可以将库存均摊到集群中的每个服务器上,通过广播通知到集群的各个服务器。
网关层基于用户 ID 做 hash 算法来决定请求到哪一台服务器。这样就可以基于应用缓存来实现库存的扣减和判断。
// 通过消息提前初始化好,借助ConcurrentHashMap实现高效线程安全
private static ConcurrentHashMap<Long, Boolean> SECKILL_FLAG_MAP = new ConcurrentHashMap<>();
// 通过消息提前设置好。由于AtomicInteger本身具备原子性,因此这里可以直接使用HashMap
private static Map<Long, AtomicInteger> SECKILL_STOCK_MAP = new HashMap<>();
...
public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
Long seckillId = request.getSeckillId();
if(!SECKILL_FLAG_MAP.get(requestseckillId)) {
// 业务异常
}
// 用户活动校验
// 库存校验
if(SECKILL_STOCK_MAP.get(seckillId).decrementAndGet() < 0) {
SECKILL_FLAG_MAP.put(seckillId, false);
// 业务异常
}
// 生成订单
// 发布订单创建成功事件
// 构建响应
return response;
}
通过以上的改造,我们就完全不需要依赖 Redis 了。性能和安全性两方面都能进一步得到提升!
总结
稀缺商品超卖绝对是重大事故。如果超卖数量多的话,甚至会给平台带来非常严重的经营影响和社会影响。
经过本次事故,让我意识到对于项目中的任何一行代码都不能掉以轻心,否则在某些场景下,这些正常工作的代码就会变成致命杀手!
来源 | https://urlify.cn/MVBvmy