vlambda博客
学习文章列表

我用Redis实现了一个轻量级的搜索引擎!

送福利啦

我用Redis实现了一个轻量级的搜索引擎!

我用Redis实现了一个轻量级的搜索引擎!

关注鸿蒙技术社区,回复【鸿蒙】价值399元的鸿蒙开发板套件(数量有限,先到先得),还可以免费下载鸿蒙入门资料


👇扫码立刻关注👇

我用Redis实现了一个轻量级的搜索引擎!

专注开源技术,共建鸿蒙生态


大家如果是做后端开发的,想必都实现过列表查询的接口,当然有的查询条件很简单,一条 SQL 就搞定了。


我用Redis实现了一个轻量级的搜索引擎!

图片来自 Pexels


但有的查询条件极其复杂,再加上库表中设计的各种不合理,导致查询接口特别难写,然后加班什么的就不用说了(不知各位有没有这种感受呢~)。


下面以一个例子开始,这是某购物网站的搜索条件,如果让你实现这样的一个搜索接口,你会如何实现?


当然你说借助搜索引擎,像 Elasticsearch 之类的,你完全可以实现。但我这里想说的是,如果要你自己实现呢?

我用Redis实现了一个轻量级的搜索引擎!

从上图中可以看出,搜索总共分为 6 大类,每大类中又分了各个子类。


这中间,各大类条件之间是取的交集,各子类中有单选、多选、以及自定义的情况,最终输出符合条件的结果集。


好了,既然需求很明确了,我们就开始来实现。


实现 1


率先登场是小 A 同学,他是写 SQL 方面的“专家”。小 A 信心满满的说:“不就是一个查询接口吗?看着条件很多,但凭着我丰富的 SQL 经验,这点还是难不倒我的。”


于是乎就写出了下面这段代码(这里以 MySQL 为例):
select ... from table_1
left join table_2
left join table_3
left join (select ... from table_x where ...) tmp_1
...
where ...
order by ...
limit m,n

代码在测试环境跑了一把,结果好像都匹配上了,于是准备上预发。这一上预发,问题就开始暴露出来。


预发为了尽可能的逼真线上环境,所以数据量自然而然要比测试大的多。所以这么一个复杂的 SQL,它的执行效率可想而知。测试同学果断把小 A 的代码给打了回来。


实现 2


总结了小 A 失败的教训,小 B 开始对 SQL 进行了优化,先是通过了 explain 关键字进行 SQL 性能分析,对该加索引的地方都加上了索引。


同时将一条复杂 SQL 拆分成了多条 SQL,计算结果在程序内存中进行计算。


伪代码如下:
$result_1 = query('select ... from table_1 where ...');
$result_2 = query('
select ... from table_2 where ...');
$result_3 = query('
select ... from table_3 where ...');
...

$result = array_intersect($result_1, $result_2, $result_3, ...);

这种方案从性能上明显比第一种要好很多,可是在功能验收的时候,产品经理还是觉得查询速度不够快。


小 B 自己也知道,每次查询都会向数据库查询多次,而且有些历史原因,部分条件是做不到单表查询的,所以查询等待的时间是避免不了的。


实现 3


小 C 从上面的方案中看到了优化的空间。他发现小 B 在思路上是没问题的,将复杂条件拆分,计算各个子维度的结果集,最后将所有的子结果集进行一个汇总合并,得到最终想要的结果。


于是他突发奇想,能否事先将各个子维度的结果集给缓存起来,这要查询的时候直接去取想要的子集,而不用每次去查库计算。


这里小 C 采用 Redis 来存储缓存数据,用它的主要原因是,它提供了多种数据结构,并且在 Redis 中进行集合的交并集操作是一件很容易的事情。


具体方案,如图所示:

我用Redis实现了一个轻量级的搜索引擎!

这里每个条件都事先将计算好的结果集 ID 存入对应的 Key 中,选用的数据结构是集合(Set)。


查询操作包括:

  • 子类单选:直接根据条件 Key,获取对应结果集。

  • 子类多选:根据多个条件 Key,进行并集操作,获取对应结果集。

  • 最终结果:将获取的所有子类结果集进行交集操作,得到最终结果。


这其实就是所谓的反向索引。这里会发现,漏了一个价格的条件。从需求中可知,价格条件是个区间,并且是无穷举的。


所以上述的这种穷举条件的 Key-Value 方式是做不到的。这里我们采用 Redis 的另一种数据结构进行实现,有序集合(Sorted Set):

我用Redis实现了一个轻量级的搜索引擎!

将所有商品加入 Key 为价格的有序集合中,值为商品 ID,每个值对应的分数为商品价格的数值。


这样在 Redis 的有序集合中就可以通过 ZRANGEBYSCORE 命令,根据分数(价格)区间,获取相应结果集。


至此,方案三的优化已全部结束,将数据的查询与计算通过缓存的手段,进行了分离。


在每次查找时,只需要简单的查找 Redis 几次就能得出结果。查询速度上符合了验收的要求。


扩展


①分页


这里你或许发现了一个严重的功能缺陷,列表查询怎么能没有分页。是的,我们马上来看 Redis 是如何实现分页的。


分页主要涉及排序,这里简单起见,就以创建时间为例。如图所示:

图中蓝色部分是以创建时间为分值的商品有序集合,蓝色下方的结果集即为条件计算而得的结果,通过 ZINTERSTORE 命令,赋结果集权重为 0,商品时间结果为 1,取交集而得的结果集赋予创建时间分值的新有序集合。


对新结果集的操作即能得到分页所需的各个数据:

  • 页面总数为:ZCOUNT 命令。

  • 当前页内容:ZRANGE 命令。

  • 若以倒序排列:ZREVRANGE命令。


②数据更新


关于索引数据更新的问题,有两种方式来进行。一种是通过商品数据的修改,来即时触发更新操作,一种是通过定时脚本来进行批量更新。


这里要注意的是,关于索引内容的更新,如果暴力的删除 Key,再重新设置 Key。


因为 Redis 中两个操作不会是原子性进行的,所以中间可能存在空白间隙,建议采用仅移除集合中失效元素,添加新元素的方式进行。


③性能优化


Redis 是内存级操作,所以单次的查询会很快。但是如果我们的实现中会进行多次的 Redis 操作,Redis 的多次连接时间可能是不必要时间消耗。


通过使用 MULTI 命令,开启一个事务,将 Redis 的多次操作放在一个事务中,最后通过 EXEC 来进行原子性执行。


注意:这里所谓的事务,只是将多个操作在一次连接中执行,如果执行过程中遇到失败,是不会回滚的。


总结


这里只是一个采用 Redis 优化查询搜索的一个简单 Demo,和现有的开源搜索引擎相比,它更轻量,学习成本页相应低些。


其次,它的一些思想与开源搜索引擎是类似的,如果再加上词语解析,也可以实现类似全文检索的功能。


编辑:陶家龙

出处:https://github.com/jasonGeng88/blog

精彩文章推荐: