请问二叉树等数据结构的物理存储结构是怎样的?
走过路过不要错过
请问二叉树等数据结构的物理存储结构是怎样的?
好吧,我将信将疑!被丢了n个鄙视的表情,然后被pass掉了。
那么,到底内存中的二叉树怎么存储在硬盘上的呢?
其实硬盘上并没有什么二叉树的,硬盘只是充当了一个存储介质,只是提供你要读的时候可以取而已,而真正的数据结构,则需要在用的时候再还原出原来的树形结构!
下面以一个简单的示例来展示磁盘上的数据结构的存储方式:
public class BinTreeDiskSample {
private static int h = -1;
private static Node root;
static class Node implements Serializable {
private static final long serialVersionUID = -4780741633734920991L;
int data;
transient Node left;
transient Node right;
int lHeight = -1, rHeight = -1;
public Node(int data) {
this.data = data;
}
public Node setLeft(Node left) {
this.left = left;
return this;
}
public Node setRight(Node right) {
this.right = right;
return this;
}
public Node getLeft() {
return left;
}
public Node getRight() {
return right;
}
// 后续遍历写入,先序遍历读出
public int write(ObjectOutputStream out) throws IOException {
if (left != null) {
lHeight = left.write(out);
}
if (right != null) {
rHeight = right.write(out);
}
h++;
out.writeObject(this);
return h;
}
private void init(List<Node> list) {
if (lHeight != -1) {
left = list.get(lHeight);
left.init(list);
}
if (rHeight != -1) {
right = list.get(rHeight);
right.init(list);
}
}
}
public static void binTreePreOrderPrint(Node root) {
System.out.print(root.data + " "); // visit root
if(root.left != null) {
binTreePreOrderPrint(root.left);
}
if(root.right != null) {
binTreePreOrderPrint(root.right);
}
}
// 先序遍历读出
public static void read(ObjectInputStream in) throws IOException,
ClassNotFoundException {
List<Node> list = new ArrayList<Node>();
Node n;
Object obj;
try {
while ((obj = in.readObject()) != null) {
n = (Node) obj;
list.add(n);
}
}
catch (Exception e) {
// EOFException ...
// e.printStackTrace();
}
root = list.get(list.size() - 1);
root.init(list);
}
public static void main(String args[]) throws FileNotFoundException,
IOException, ClassNotFoundException {
// 构造一棵二叉树 11 21 41 61 51 31
Node n6 = new Node(61);
Node n4 = new Node(41).setLeft(n6);
Node n5 = new Node(51);
Node n2 = new Node(21).setLeft(n4).setRight(n5);
Node n3 = new Node(31);
Node n1 = new Node(11).setLeft(n2).setRight(n3);
root = n1;
System.out.println("output node: ");
binTreePreOrderPrint(root);
// 将数据写稿磁盘
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("btree.bin"));
root.write(out);
out.close();
root = null;
// 将数据从磁盘读入,并进行数据结构的重新构建
ObjectInputStream in = new ObjectInputStream(new FileInputStream("btree.bin"));
read(in);
in.close();
System.out.println("\nread node: ");
binTreePreOrderPrint(root);
}
}
输出:
如上二叉树的磁盘存储,使用了java自带的序列化工具,将节点写入磁盘(注:这并不是一种好的实践),然后在读出的时候,按照写稿时候的规则,进行重新构建二叉树即可。
所以:
存储磁盘的数据结构,只是一种约定的方式,只是为了方便在重新恢复链表,二叉树等等内存结构的算法而已。
如:数据库索引是存储在磁盘上,当表中的数据量比较大时,索引的大小也跟着增长,达到几个G甚至更多。当我们利用索引进行查询的时候,不可能把索引全部加载到内存中,只能逐一加载每个磁盘页,这里的磁盘页就对应索引树的节点。
B+/-树索引用使用很多的数据结构,下面做一点简单介绍:
一、B-Tree
m阶B-Tree满足以下条件:
1、每个节点最多拥有m个子树
2、根节点至少有2个子树
3、分支节点至少拥有m/2颗子树(除根节点和叶子节点外都是分支节点)
4、所有叶子节点都在同一层、每个节点最多可以有m-1个key,并且以升序排列
二、B+Tree的定义
B+Tree是B树的变种,有着比B树更高的查询性能,来看下m阶B+Tree特征:
1、有m个子树的节点包含有m个元素(B-Tree中是m-1)
2、根节点和分支节点中不保存数据,只用于索引,所有数据都保存在叶子节点中。
3、所有分支节点和根节点都同时存在于子节点中,在子节点元素中是最大或者最小的元素。
4、叶子节点会包含所有的关键字,以及指向数据记录的指针,并且叶子节点本身是根据关键字的大小从小到大顺序链接。
下面让我们来看看现代数据库的磁盘存储结构吧:
以下部分内容摘自:https://blog.csdn.net/qq910894904/article/details/39312901
我们都知道,数据库通常使用B+树作为索引,但是国内很少有人提到数据库使用的是HeapFile来管理记录的存储。国外的一些大学在“数据库系统实现”这门课上通常会让学生实现一个简单的数据库,因此有不少HeapFile的资料。
基于Page的HeapFile
采用链表形式的是HeapFile如下:
Heap file和链表结构类似的地方:
支持增加(append)功能
支持大规模顺序扫描
不支持随机访问
这种方式的HeapFile在寻找具有合适空间的半空Page时需要遍历多个页,I/O开销大。因此一般常用的是采用基于索引的HeaFile.在HeapFile中使用一部分空间来存储Page作为索引,并记录对应Page的剩余量。如下:
像上图那样,索引单独存在一个page上。数据记录存在其他page上,如果有多个索引的page,则可以表示为:
下面是Heap file自有的一些特性:
数据保存在二级存储体(disk)中:Heapfile主要被设计用来高效存储大数据量,数据量的大小只受存储体容量限制;
数据被组织成页;
页可以部分为空(并不要求每个page必须装满);
一般情况下,使用page在其所在文件中的偏移量就可以表示了。
了解更多java后端架构知识以及最新面试宝典
看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力
出处:https://www.cnblogs.com/yougewe/p/9901758.html