vlambda博客
学习文章列表

VB程序设计的常用算法


算法(Algorithm):计算机解题的基本思想方法和步骤。算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。通常使用自然语言、结构化流程图、伪代码等来描述算法。

一、计数、求和、求阶乘等简单算法

此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。

例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。

本题使用数组来处理,用数组a(1 to 100)存放产生的确100个随机整数,数组x(1 to 10)来存放个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数。即个位是1的个数存放在x(1)中,个位是2的个数存放在x(2)中,……个位是0的个数存放在x(10)。

将程序编写在一个GetTJput过程中,代码如下:

Public Sub GetTJput()   

    Dim a(1 To 100) As Integer

    Dim x(1 To 10) As Integer

    Dim i As Integer, p As Integer

    '产生100个[0,99]范围内的随机整数,每行10个打印出来

    For i = 1 To 100

        a(i) = Int(Rnd * 100)

        If a(i) < 10 Then

            Form1.Print Space(2); a(i);

        Else

            Form1.Print Space(1); a(i);

        End If

        If i Mod 10 = 0 Then Form1.Print

    Next i

    '统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数,并将统计结果保存在数组x(1),x(2),...,x(10)中,将统计结果打印出来

    For i = 1 To 100

        p = a(i)  Mod  10    ' 求个位上的数字

        If p = 0 Then p = 10

        x(p) = x(p) + 1

    Next i

    Form1.Print "统计结果"

    For i = 1 To 10

        p = i

        If i = 10 Then p = 0

        Form1.Print "个位数为"+ Str(p) + "共" + Str(x(i)) + "个"

    Next i

End Sub

 

二、求两个整数的最大公约数、最小公倍数

分析:求最大公约数的算法思想:(最小公倍数=两个整数之积/最大公约数)

       (1) 对于已知两数m,n,使得m>n;

       (2)  m除以n得余数r;

       (3) 若r=0,则n为求得的最大公约数,算法结束;否则执行(4);

       (4) m←n,n←r,再重复执行(2)。

     例如: 求 m=14 ,n=6 的最大公约数.        m      n        r

                                                                         14      6       2

                                             6       2       0

m=inputBox("m=")

n=inputBox("n=")

nm=n*m

If m < n Then t = m: m = n: n = t

    r=m mod n

    Do While (r <>0)                               

         m=n

         n=r

         r= m mod n

    Loop

    Print "最大公约数=",n

Print "最小公倍数=",nm/n

 

三、判断素数

只能被1或本身整除的数称为素数  基本思想:把m作为被除数,将2—INT()作为除数,如果都除不尽,m就是素数,否则就不是。(可用以下程序段实现)

m =val( InputBox("请输入一个数"))

          For i=2 To int(sqr(m))

               If m Mod i = 0 Then    Exit  For

           Next i

          If i > int(sqr(m)) Then

              Print "该数是素数"

          Else

              Print "该数不是素数"

          End If

将其写成一函数,若为素数返回True,不是则返回False

Private Function Prime( m asInteger)  As  Boolean

                  Dim  i%          

                  Prime=True

                  For i=2 To int(sqr(m))

                      If m Mod i = 0 Then   Prime=False:  Exit  For

                  Next i

             End Function

 

 

 

 

五、排序问题

1.选择法排序(升序)

基本思想:

1)对有n个数的序列(存放在数组a(n)中),从中选出最小的数,与第1个数交换位置;

2)除第1 个数外,其余n-1个数中选最小的数,与第2个数交换位置;

3)依次类推,选择了n-1次后,这个数列已按升序排列。

 

程序代码如下:

For i = 1 To n - 1

        imin = i

        For j = i + 1 To n

            If a(imin) > a(j) Then imin = j

        Next j

        temp = a(i)

        a(i) = a(imin)

        a(imin) = temp

Next I

 

2.冒泡法排序(升序)

  基本思想:(将相邻两个数比较,小的调到前头)

1)有n个数(存放在数组a(n)中),第一趟将每相邻两个数比较,小的调到前头,经n-1次两两相邻比较后,最大的数已“沉底”,放在最后一个位置,小数上升“浮起”;

2)第二趟对余下的n-1个数(最大的数已“沉底”)按上法比较,经n-2次两两相邻比较后得次大的数;

3)依次类推,n个数共进行n-1趟比较,在第j趟中要进行n-j次两两比较。

程序段如下

For i = 1 To n - 1

   For j = 1 To n-i

        If a(j) > a(j+1) Then

           temp=a(j):a(j)=a(j+1):a(j+1)=temp

        End if

   Next j

Next i

 

 

六、查找问题

1.①顺序查找法(在一列数中查找某数x)

  基本思想:一列数放在数组a(1)---a(n)中,待查找的数放在x 中,把x与a数组中的元素从头到尾一一进行比较查找。用变量p表示a数组元素下标,p初值为1,使x与a(p)比较,如果x不等于a(p),则使p=p+1,不断重复这个过程;一旦x等于a(p)则退出循环;另外,如果p大于数组长度,循环也应该停止。(这个过程可由下语句实现)

    p = 1

    Do While x <> a(p) And p < =n

        p = p + 1

    Loop

下面写一查找函数Find,若找到则返回下标值,找不到返回0

Option Base 1

Private Function Find( a( ) As Single,xAs Single)  As Integer

      Dim n%,p%

      n=Ubound( a )

p = 1

Do While x <> a(p) And p < =n

         p = p + 1

Loop

      If  p>n then  p=0

       Find=p

End Function   

 

②基本思想:一列数放在数组a(1)---a(n)中,待查找的关键值为key,把key与a数组中的元素从头到尾一一进行比较查找,若相同,查找成功,若找不到,则查找失败。(查找子过程如下。index:存放找到元素的下标。)

Public Sub Search(a() As Variant, key AsVariant, index%)

  Dim i%

  For i = LBound(a) To UBound(a)

    If key = a(i) Then

      index = i

      Exit Sub

    End If

  Next i

    index = -1

End Sub

 

 

七、插入法

把一个数插到有序数列中,插入后数列仍然有序

基本思想:n个有序数(从小到大)存放在数组a(1)—a(n)中,要插入的数x。首先确定x插在数组中的位置P;(可由以下语句实现)

p=1

do while x>a(p) and p<=n

p=p+1

loop

a(p)—a(n)元素向后顺移一个位置以空出a(p)元素放入x,可由以下语句实现:

for i=n to p  step-1

  a(i+1)=a(i)

next i

a(p)=x

将其写成一插入函数

Private Sub Instert(a() As Single, x AsSingle)

            Dim p%, n%, i%

            n = UBound(a)

            ReDim Preserve a(n + 1)

            p = 0

            Do While x > a(p) And p <=n    ' 确定x应插入的位置

                  p = p + 1

            Loop

            For i = n To p Step -1

              a(i + 1) = a(i)

            Next i

            a(p)= x

     End Sub

 

 

八、矩阵(二维数组)运算

(1)矩阵的加、减运算

           C(i,j)=a(i,j)+b(i,j)           加法

           C(i,j)=a(i,j)-b(i,j)            减法

 

(2)矩阵相乘

(矩阵A有M*L个元素,矩阵B有L*N个元素,则矩阵C=A*B有M*N个元素)。矩阵C中任一元素  (i=1,2,…,m;  j=1,2,…,n)

For i = 0 To m                             

For j = 0 To n                             

      c(i, j) =0                             

       For k = 0 To l                           

        c(i, j) = c(i, j) + a(i, k) * b(k,j)            

      Nextk                                 

  Nextj                               

 Nexti                                  

 

(3)矩阵传置

例:有二维数组a(5,5),要对它实现转置,可用下面两种方式:

For i=1 to5                                                             (2)     For i=2 to 5

For j=i+1 to5                                                                    For j=1 to i

t=a(i,j)                                                                        t=a(i,j)

a(i,j)=a(j,i)                         a(i,j)= a(j,i)

a(j,i)=t                             a(j,i)=t

Nextj                                                                                Next j

Nexti                                                                                       Next i

 

(4)求二维数组中最小元素及其所在的行和列                                                                                                          

基本思路同一维数组,可用下面程序段实现(以二维数组a(2,3)为例):

‘变量max中存放最大值,row,column存放最大值所在行列号

Max = a(1, 1): row = 1: Column = 1

For i = 1 To 2

    For j = 1 To 3

        If a(i, j) > a(row, Column) Then

            Max = a(i, j)

            row = i

            Column = j

        End If

    Next j

Next i

Print "最大元素是";Max

Print "在第"& row & "行,"; "第"& Column & "列"

十、数制转换

     将一个十进制整数m转换成→r(2-16)进制字符串。

方法:将m不断除 r 取余数,直到商为零,以反序得到结果。下面写出一转换函数,参数idec为十进制数,ibase为要转换成数的基(如二进制的基是2,八进制的基是8等),函数输出结果是字符串。

Private Function TrDec(idec As Integer,ibase As Integer) As String

     Dim strDecR$, iDecR%

     strDecR = ""

     Do While idec <> 0

          iDecR = idec Mod ibase

          If iDecR >= 10 Then

             strDecR = Chr$(65 +iDecR - 10) & strDecR

          Else

             strDecR = iDecR & strDecR

          End If

          idec = idec \ ibase

    Loop

   TrDec = strDecR

 End Function

十一、字符串的一般处理

 

1.统计文本单词的个数

 

算法思路:

 (1)从文本(字符串)的左边开始,取出一个字符;设逻辑量WT表示所取字符是否是单词内的字符,初值设为False

 (2)若所取字符不是“空格”,“逗号”,“分号”或“感叹号”等单词的分隔符,再判断WT是否为True,若WT不为True则表是新单词的开始,让单词数Nw=Nw+1,让WT=True;

 (3)若所取字符是“空格”,“逗号”,“分号”或“感叹号”等单词的分隔符,则表示字符不是单词内字符,让WT=False;

(4)        再依次取下一个字符,重得(2)(3)直到文本结束。

下面程序段是字符串strI中包含的单词数

Nw = 0: Wt = False

nL = Len(RTrim(strI))

For i = 1 To nL

      strT = Mid$(strI, i,1)     '取第i个字符

      Select Case strT

            Case " ", ",",";", "!"

                  Wt = False

            Case Else

                  If Not Wt Then

                       Nw = Nw + 1

                       Wt= True

                  End If

       End Select

Next i

Print "单词数为:",Nw

 

十二、穷举法

穷举法(又称“枚举法”)的基本思想是:一一列举各种可能的情况,并判断哪一种可能是符合要求的解,这是一种“在没有其它办法的情况的方法”,是一种最“笨”的方法,然而对一些无法用解析法求解的问题往往能奏效,通常采用循环来处理穷举问题。

例: 将一张面值为100元的人民币等值换成100张5元、1元和0.5元的零钞,要求每种零钞不少于1张,问有哪几种组合?

Dim i%, j%, k%

Print "5元             1元          0.5元"

For i = 1 To 20

        For j = 1 To 100 - i

               k = 100 - i - j

               If 5.0 * i + 1.0 * j + 0.5 * k = 100Then

                   Print i, j, k

               End If

         Next j

   Next i

 

 

 

十三、递归算法

用自身的结构来描述自身,称递归

VB允许在一个Sub子过程和Function过程的定义内部调用自己,即递归Sub子过程和递归Function函数。递归处理一般用栈来实现,每调用一次自身,把当前参数压栈,直到递归结束条件;然后从栈中弹出当前参数,直到栈空。

递归条件:(1)递归结束条件及结束时的值;(2)能用递归形式表示,且递归向终止条件发展。

例:编fac(n)=n! 的递归函数

      Function fac(n As Integer) AsInteger

          If n= 1 Then

                 fac = 1

          Else

      fac = n * fac(n - 1)

          EndIf

End Function