vlambda博客
学习文章列表

【SVM分类】基于风驱动算法优化支持向量机实现数据分类附matlab代码

1 简介

支持向量机是利用已知数据类别的样本为训练样本,寻找同类数据的空间聚集特征,从而对测试样本进行分类验证,通过验证可将分类错误的数据进行更正。本文以体检数据为数据背景,首先通过利用因子分析将高维数据进行降维,由此将所有指标整合成几个综合性指标;为降低指标之间的衡量标准所引起的误差,本文利用 MATLAB软件将数据进行归一化处理,结合聚类分析将数据分类;最后本文利用最小二乘支持向量机分类算法进行分类验证,从而计算出数据分类的准确率,并验证了数据分类的准确性和合理性。

【SVM分类】基于风驱动算法优化支持向量机实现数据分类附matlab代码

2 部分代码


%--------------------------------------------------------------
tic; clear; close all; clc; format long g;delete('WDOoutput.txt'); delete('WDOpressure.txt'); delete('WDOposition.txt');fid=fopen('WDOoutput.txt','a');%--------------------------------------------------------------
% User defined WDO parameters:param.popsize = 20; % population size.param.npar = 5; % Dimension of the problem.param.maxit = 500; % Maximum number of iterations.param.RT = 3; % RT coefficient.param.g = 0.2; % gravitational constant.param.alp = 0.4; % constants in the update eq.param.c = 0.4; % coriolis effect.maxV = 0.3; % maximum allowed speed.dimMin = -5; % Lower dimension boundary.dimMax= 5; % Upper dimension boundary.%---------------------------------------------------------------
% Initialize WDO population, position and velocity:% Randomize population in the range of [-1, 1]:pos = 2*(rand(param.popsize,param.npar)-0.5);% Randomize velocity:vel = maxV * 2 * (rand(param.popsize,param.npar)-0.5); %---------------------------------------------------------------% Evaluate initial population: (Sphere Function)for K=1:param.popsize, x = (dimMax - dimMin) * ((pos(K,:)+1)./2) + dimMin; pres(K,:) = sum (x.^2);end
%----------------------------------------------------------------% Finding best air parcel in the initial population :[globalpres,indx] = min(pres);globalpos = pos(indx,:);minpres(1) = min(pres); % minimum pressure
%-----------------------------------------------------------------% Rank the air parcels:[sorted_pres rank_ind] = sort(pres);% Sort the air parcels:pos = pos(rank_ind,:);keepglob(1) = globalpres;%-----------------------------------------------------------------
% Start iterations :iter = 1; % iteration counterfor ij = 2:param.maxit, % Update the velocity: for i=1:param.popsize % choose random dimensions: a = randperm(param.npar); % choose velocity based on random dimension: velot(i,:) = vel(i,a); vel(i,:) = (1-param.alp)*vel(i,:)-(param.g*pos(i,:))+ ... abs(1-1/i)*((globalpos-pos(i,:)).*param.RT)+ ... (param.c*velot(i,:)/i); end % Check velocity: vel = min(vel, maxV); vel = max(vel, -maxV); % Update air parcel positions: pos = pos + vel; pos = min(pos, 1.0); pos = max(pos, -1.0); % Evaluate population: (Pressure) for K=1:param.popsize, x = (dimMax - dimMin) * ((pos(K,:)+1)./2) + dimMin; pres(K,:) = sum (x.^2); end
%---------------------------------------------------- % Finding best particle in population [minpres,indx] = min(pres); minpos = pos(indx,:); % min location for this iteration %---------------------------------------------------- % Rank the air parcels: [sorted_pres rank_ind] = sort(pres); % Sort the air parcels position, velocity and pressure: pos = pos(rank_ind,:); vel = vel(rank_ind,:); pres = sorted_pres; % Updating the global best: better = minpres < globalpres; if better globalpres = minpres % initialize global minimum globalpos = minpos; end % Keep a record of the progress: keepglob(ij) = globalpres; save WDOposition.txt pos -ascii -tabs;end %Save values to the final file. pressure = transpose(keepglob); save WDOpressure.txt pressure -ascii -tabs; %END%-----------------------------------------------------

3 运行结果

4 参考文献

[1]张烨, 黄伟. 基于天牛群算法优化SVM的磨煤机故障诊断. 

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。