spark刷爆磁盘与java弱引用的关系
一 引用基本概念
如下面,定义两个变量num,str,存储模型大致如下图:
int num = 6;String str = “浪尖聊大数据”;
二 值传递&引用传递
举例说明引用传递和值传递:
第一个栗子:基本类型void foo(int value) {value = 88;}foo(num); // num 没有被改变第二个栗子:没有提供改变自身方法的引用类型void foo(String text) {text = "mac";}foo(str); // str 也没有被改变第三个栗子:提供了改变自身方法的引用类型StringBuilder sb = new StringBuilder("vivo");void foo(StringBuilder builder) {builder.append("5");}foo(sb); // sb 被改变了,变成了"vivo5"。第四个栗子:提供了改变自身方法的引用类型,但是不使用,而是使用赋值运算符。StringBuilder sb = new StringBuilder("oppo");void foo(StringBuilder builder) {builder = new StringBuilder("vivo");}foo(sb); // sb 没有被改变,还是 "oppo"。
三 引用的类型
单纯的申明一个软引用,指向一个person对象1 SoftReference pSoftReference=new SoftReference(new Person(“张三”,12));声明一个引用队列ReferenceQueue<Person> queue = new ReferenceQueue<>();声明一个person对象,李四,obj是其强引用Person obj = new Person(“李四”,13);使软引用softRef指向李四对应的对象,并且将该软引用关联到引用队列2 SoftReference softRef = new SoftReference<Object>(obj,queue);声明一个person对象,名叫王酒,并保证其仅含软引用,且将软引用关联到引用队列queue3 SoftReference softRef = new SoftReference<Object>(new Person(“王酒”,15),queue);使用很简单softRef.get即可获取对应的value。
WeakReference<Person> weakReference = new WeakReference<>(new Person(“浪尖”,18));声明一个引用队列ReferenceQueue<Person> queue = new ReferenceQueue<>();声明一个person对象,李四,obj是其强引用Person obj = new Person(“李四”,13);声明一个弱引用,指向强引用obj所指向的对象,同时该引用绑定到引用队列queue。WeakReference weakRef = new WeakReference<Object>(obj,queue);使用弱引用也很简单,weakRef.get
声明引用队列ReferenceQueue queue = new ReferenceQueue();声明一个虚引用PhantomReference<Person> reference = new PhantomReference<Person>(new Person(“浪尖”,18), queue);获取虚引用的值,直接为null,因为无法通过虚引用获取引用对象。System.out.println(reference.get());
四 Threadlocal如何使用弱引用
五 spark如何使用弱引用进行数据清理
shuffle相关的引用,实际上是在ShuffleDependency内部实现了,shuffle状态注册到ContextCleaner过程:
_rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
然后,我们翻开registerShuffleForCleanup函数源码可以看到,注释的大致意思是注册ShuffleDependency目的是在垃圾回收的时候清除掉它对应的数据:
/** Register a ShuffleDependency for cleanup when it is garbage collected. */def registerShuffleForCleanup(shuffleDependency: ShuffleDependency[_, _, _]): Unit = {registerForCleanup(shuffleDependency, CleanShuffle(shuffleDependency.shuffleId))}
其中,registerForCleanup函数如下:
/** Register an object for cleanup. */private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask): Unit = {referenceBuffer.add(new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue))}
referenceBuffer主要作用保存CleanupTaskWeakReference弱引用,确保在引用队列没处理前,弱引用不会被垃圾回收。
/*** A buffer to ensure that `CleanupTaskWeakReference`s are not garbage collected as long as they* have not been handled by the reference queue.*/private val referenceBuffer =Collections.newSetFromMap[CleanupTaskWeakReference](new ConcurrentHashMap)
ContextCleaner内部有一个线程,循环从引用队列里取被垃圾回收的RDD等相关弱引用,然后完成对应的数据清除工作。
private val cleaningThread = new Thread() { override def run(): Unit = keepCleaning() }
其中,keepCleaning函数,如下:
/** Keep cleaning RDD, shuffle, and broadcast state. */private def keepCleaning(): Unit = Utils.tryOrStopSparkContext(sc) {while (!stopped) {try {val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT)).map(_.asInstanceOf[CleanupTaskWeakReference])// Synchronize here to avoid being interrupted on stop()synchronized {reference.foreach { ref =>logDebug("Got cleaning task " + ref.task)referenceBuffer.remove(ref)ref.task match {case CleanRDD(rddId) =>doCleanupRDD(rddId, blocking = blockOnCleanupTasks)case CleanShuffle(shuffleId) =>doCleanupShuffle(shuffleId, blocking = blockOnShuffleCleanupTasks)case CleanBroadcast(broadcastId) =>doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)case CleanAccum(accId) =>doCleanupAccum(accId, blocking = blockOnCleanupTasks)case CleanCheckpoint(rddId) =>doCleanCheckpoint(rddId)}}}} catch {case ie: InterruptedException if stopped => // ignorecase e: Exception => logError("Error in cleaning thread", e)}}}
shuffle数据清除的函数是doCleanupShuffle,具体内容如下:
/** Perform shuffle cleanup. */def doCleanupShuffle(shuffleId: Int, blocking: Boolean): Unit = {try {logDebug("Cleaning shuffle " + shuffleId)mapOutputTrackerMaster.unregisterShuffle(shuffleId)shuffleDriverComponents.removeShuffle(shuffleId, blocking)listeners.asScala.foreach(_.shuffleCleaned(shuffleId))logDebug("Cleaned shuffle " + shuffleId)} catch {case e: Exception => logError("Error cleaning shuffle " + shuffleId, e)}}
细节就不细展开了。
ContextCleaner的start函数被调用后,实际上启动了一个调度线程,每隔30min主动调用了一次System.gc(),来触发垃圾回收。
/** Start the cleaner. */def start(): Unit = {cleaningThread.setDaemon(true)cleaningThread.setName("Spark Context Cleaner")cleaningThread.start()periodicGCService.scheduleAtFixedRate(() => System.gc(),periodicGCInterval, periodicGCInterval, TimeUnit.SECONDS)}
具体参数是:
spark.cleaner.periodicGC.interval
