HBase 读写设计实践
背景介绍
数据量
查询要求
check 表的主键为 id(Oracle 全局 id),查询键为 check_id,一个 check_id 对应多条记录,所以需返回对应记录的 list;opinion 表的主键也是 id,查询键是 bussiness_no 和 buss_type,同理返回 list。单笔查询返回 List 大小约 50 条以下,查询频率为 100 笔 / 天左右,查询响应时间 2s。
技术选型
从数据量及查询要求来看,分布式平台上具备大数据量存储,且提供实时查询能力的组件首选 HBase。根据需求做了初步的调研和评估后,大致确定 HBase 作为主要存储组件。将需求拆解为写入和读取 HBase 两部分。
读取
读取 HBase 相对来说方案比较确定,基本根据需求设计 RowKey,然后根据 HBase 提供的丰富 API(get,scan 等)来读取数据,满足性能要求即可。
写入
写入 HBase 的方法大致有以下几种:
Java 调用 HBase 原生 API,HTable.add(List(Put))。
MapReduce 作业,使用 TableOutputFormat 作为输出。
Bulk Load,先将数据按照 HBase 的内部数据格式生成持久化的 HFile 文件,然后复制到合适的位置并通知 RegionServer ,即完成海量数据的入库。其中生成 Hfile 这一步可以选择 MapReduce 或 Spark。
本文采用第 3 种方式,Spark + Bulk Load 写入 HBase。该方法相对其他 2 种方式有以下优势:
BulkLoad 不会写 WAL,也不会产生 flush 以及 split。
如果我们大量调用 PUT 接口插入数据,可能会导致大量的 GC 操作。除了影响性能之外,严重时甚至可能会对 HBase 节点的稳定性造成影响,采用 BulkLoad 无此顾虑。
过程中没有大量的接口调用消耗性能。
可以利用 Spark 强大的计算能力。
表设计
方法一:
方法二:
第一种方法优点是表结构简单,RowKey 容易设计,缺点为 1)数据写入时,一行原始数据需要写入到 2 张表,且索引表写入前需要先扫描该 RowKey 是否存在,如果存在,则加入一列,否则新建一行,2)读取的时候,即便是采用 List, 也至少需要读取 2 次表。第二种设计方法,RowKey 设计较为复杂,但是写入和读取都是一次性的。综合考虑,我们采用第二种设计方法。
RowKey 设计
热点问题
HBase 中的行是以 RowKey 的字典序排序的,其热点问题通常发生在大量的客户端直接访问集群的一个或极少数节点。默认情况下,在开始建表时,表只会有一个 region,并随着 region 增大而拆分成更多的 region,这些 region 才能分布在多个 regionserver 上从而使负载均分。对于我们的业务需求,存量数据已经较大,因此有必要在一开始就将 HBase 的负载均摊到每个 regionserver,即做 pre-split。常见的防治热点的方法为加盐,hash 散列,自增部分(如时间戳)翻转等。
RowKey 设计
Step1:确定预分区数目,创建 HBase Table
create 'tinawang:check',
{ NAME => 'f', COMPRESSION => 'SNAPPY',DATA_BLOCK_ENCODING => 'FAST_DIFF',BLOOMFILTER=>'ROW'},
{SPLITS => [ '1','2','3', '4','5','6','7','8','9']}
其中,Column Family =‘f’,越短越好。
COMPRESSION => ‘SNAPPY’,HBase 支持 3 种压缩 LZO, GZIP and Snappy。GZIP 压缩率高,但是耗 CPU。后两者差不多,Snappy 稍微胜出一点,cpu 消耗的比 GZIP 少。一般在 IO 和 CPU 均衡下,选择 Snappy。
DATA_BLOCK_ENCODING => ‘FAST_DIFF’,本案例中 RowKey 较为接近,通过以下命令查看 key 长度相对 value 较长。
Step2:RowKey 组成
Salt: 让数据均衡的分布到各个 Region 上,结合 pre-split,我们对查询键即 check 表的 check_id 求 hashcode 值,然后 modulus(numRegions) 作为前缀,注意补齐数据。
Hash 散列:因为 check_id 本身是不定长的字符数字串,为使数据散列化,方便 RowKey 查询和比较,我们对 check_id 采用 SHA1 散列化,并使之 32 位定长化。
为增强可读性,中间还可以加上自定义的分割符,如’+’,’|’等。
以上设计能保证对每次查询而言,其 salt+hash 前缀值是确定的,并且落在同一个 region 中。需要说明的是 HBase 中 check 表的各列同数据源 Oracle 中 check 表的各列存储。
历史推荐