如何根据数组创建二叉树?
之前的详述了Leetcode中链表相关算法题的测试方法。在Leetcode中关于树的算法题中,很多树的题目,测试用例都是一个数组,比如102. 二叉树的层序遍历中所示:
给定二叉树: [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
那么问题来了,如何根据数组构造一颗树呢?
为了加快刷题,我们需要一个工具来实现构造树和打印树结构这2个问题。一、树
树是一种抽象数据类型(ADT)或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由 n(n>0)个有限节点组成一个具有层次关系的集合。
如上图所示,把它叫做「树」是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
树具有以下的特点:
每个节点都只有有限个子节点或无子节点;
没有父节点的节点称为根节点;
每一个非根节点有且只有一个父节点;
除了根节点外,每个子节点可以分为多个不相交的子树;
树里面没有环路。
当我们完成一棵树的构建之后,虽然我们已经有树的前序、中序和后序遍历这种可以遍历树,但是如果我们如上图一样展示这棵树的结构,如何才能直观地打印出来呢?
二、如何打印一棵树?
这里我们借用Leetcode中二叉树的数据结构定义:
/**
* Definition for a binary tree node.
*/
public class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int x) {
this.val = x;
}
public TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
2.1 思路
树的展示方式有2种,水平展示和竖直展示。竖直展示比较直观,水平展示更适合用于节点元素大小长短不一致的情况,Linux下展示文件结构就是水平展示。
2.2 水平树
代码如下所示:
public static int getTreeDepth(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + Math.max(getTreeDepth(root.left), getTreeDepth(root.right));
}
private static String traversePreOrder(TreeNode root) {
if (root == null) {
return "";
}
StringBuilder sb = new StringBuilder();
sb.append(root.val);
String pointerRight = "└──";
String pointerLeft;
if (root.right != null) {
pointerLeft = "├──";
} else {
pointerLeft = "└──";
}
traverseNodes(sb, "", pointerLeft, root.left, root.right != null);
traverseNodes(sb, "", pointerRight, root.right, false);
return sb.toString();
}
private static void traverseNodes(StringBuilder sb, String padding, String pointer, TreeNode node,
boolean hasRightSibling) {
if (node == null) {
return;
}
sb.append("\n");
sb.append(padding);
sb.append(pointer);
sb.append(node.val);
StringBuilder paddingBuilder = new StringBuilder(padding);
if (hasRightSibling) {
paddingBuilder.append("│ ");
} else {
paddingBuilder.append(" ");
}
String paddingForBoth = paddingBuilder.toString();
String pointerRight = "└──";
String pointerLeft = (node.right != null) ? "├──" : "└──";
traverseNodes(sb, paddingForBoth, pointerLeft, node.left, node.right != null);
traverseNodes(sb, paddingForBoth, pointerRight, node.right, false);
}
public static void printTreeHorizontal(TreeNode root) {
System.out.print(traversePreOrder(root));
}
2.3 垂直树
代码如下所示:
public static void printTree(TreeNode root) {
int maxLevel = getTreeDepth(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static void printNodeInternal(List<TreeNode> nodes, int level, int maxLevel) {
if (nodes == null || nodes.isEmpty() || isAllElementsNull(nodes)) {
return;
}
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
printWhitespaces(firstSpaces);
List<TreeNode> newNodes = new ArrayList<TreeNode>();
for (TreeNode node : nodes) {
if (node != null) {
System.out.print(node.val);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
printWhitespaces(endgeLines + endgeLines + i + 1);
continue;
}
if (nodes.get(j).left != null) {
System.out.print("/");
} else {
printWhitespaces(1);
}
printWhitespaces(i + i - 1);
if (nodes.get(j).right != null) {
System.out.print("\\");
} else {
printWhitespaces(1);
}
printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < count; i++) {
System.out.print(" ");
}
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null) {
return false;
}
}
return true;
}
三、从数组构建一棵二叉树
代码如下所示:
public static TreeNode constructTree(Integer[] array) {
if (array == null || array.length == 0 || array[0] == null) {
return null;
}
int index = 0;
int length = array.length;
TreeNode root = new TreeNode(array[0]);
Deque<TreeNode> nodeQueue = new LinkedList<>();
nodeQueue.offer(root);
TreeNode currNode;
while (index < length) {
index++;
if (index >= length) {
return root;
}
currNode = nodeQueue.poll();
Integer leftChild = array[index];
if (leftChild != null) {
currNode.left = new TreeNode(leftChild);
nodeQueue.offer(currNode.left);
}
index++;
if (index >= length) {
return root;
}
Integer rightChild = array[index];
if (rightChild != null) {
currNode.right = new TreeNode(rightChild);
nodeQueue.offer(currNode.right);
}
}
return root;
}
四、测试
下面就来测试下代码吧:
public static void main(String[] args) {
Integer[] tstData1 = {1, null, 2, 2, 32, 31, 3, 23, 1, 23, 123, 12, 3, 12, 31, 23, 2};
TreeNode tstNode1 = constructTree(tstData1);
System.out.println("\nTree:");
printTree(tstNode1);
System.out.println("\nHorizontal Tree:");
printTreeHorizontal(tstNode1);
System.out.println("\nPreOrder:");
preOrderPrint(tstNode1);
Integer[] tstData2 = {1, 2, 3, null, 4, 5, 6, 7, null};
TreeNode tstNode2 = constructTree(tstData2);
System.out.println("\nTree:");
printTree(tstNode2);
System.out.println("\nHorizontal Tree:");
printTreeHorizontal(tstNode2);
System.out.println("\nPreOrder:");
preOrderPrint(tstNode2);
System.out.println("\nInOrder:");
inOrderPrint(tstNode2);
System.out.println("\nPostOrder:");
postOrderPrint(tstNode2);
}
输出如下所示:
Tree:
1
\
\
\
\
\
\
\
\
2
\
\
\
\
2 32
\ / \
\ / \
31 3 23 1
\ / \ / \ / \
23 123 12 3 12 31 23 2
Horizontal Tree:
1
└──2
├──2
├──31
│ ├──23
│ └──123
└──3
├──12
└──3
└──32
├──23
├──12
└──31
└──1
├──23
└──2
PreOrder:
1,2,2,31,23,123,3,12,3,32,23,12,31,1,23,2,
Tree:
1
\
\
\
\
2 3
\ / \
\ / \
4 5 6
7
Horizontal Tree:
1
├──2
└──4
└──7
└──3
├──5
└──6
PreOrder:
1,2,4,7,3,5,6,
InOrder:
2,7,4,1,5,3,6,
PostOrder:
7,4,2,5,6,3,1,
五、小结
通过上述,我们最终就完成了我们的任务。