【LCS算法#1】【二维动态规划#7】【C++】LeetCode#64 1143.最长公共子序列 Medium
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
For example, "ace" is a subsequence of "abcde".
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
-
1 <= text1.length, text2.length <= 1000 -
text1 and text2 consist of only lowercase English characters.
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。
「题解」
1、状态:dp[i][j] -- 以text1的子串[0,i]和text2的子串[0,j]的最长公共序列
2、起始条件base case:索引为0的行列表示空串,dp[0][...]和dp[...][0]都为0,即矩阵的左边和上边都为0
for (int i = 0; i <= len1; ++i)
dp[i][0] = 0;
for (int j = 0; j <= len2; ++j)
dp[0][j] = 0;
3、状态转移方程:
if (text1[i - 1] == text2[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
「边界细节」
为了避免i-1,j-1不合法,一开始创建的dp二维数组比字符串size+1,长len1+1,宽len2+1,后续遍历时i和j都从1开始
「AC代码」
class Solution {
public:
int longestCommonSubsequence(string text1, string text2)
{
int len1 = text1.size();
int len2 = text2.size();
vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0)); // 构建并初始化二维数组,长宽都要各自比原来长度多1,用来放初始值0
// 边界条件
for (int i = 0; i <= len1; ++i)
dp[i][0] = 0;
for (int j = 0; j <= len2; ++j)
dp[0][j] = 0;
// 状态转移方程
for (int i = 1; i <= len1; ++i)
{
for (int j = 1; j <= len2; ++j)
{
if (text1[i - 1] == text2[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[len1][len2];
}
};
「复杂度」
时间复杂度O(mn),空间复杂度O(mn)