vlambda博客
学习文章列表

用 Go 学算法--归并排序

今天继续基础排序算法的图解和Go 代码实现,上次我们分享了《》,这次分享一个时间复杂度为*** 诶,时间复杂度多少先保密,文末会有分析。这次分享的排序算法是—归并排序(Merge Sort)

归并排序的思想

与快速排序一样,归并排序采用的也是分治的策略,把原本的问题先分解成一些小问题进行求解,再把这些小问题各自的答案修整到一起得到原本问题的答案,从而达到分而治之的目的。

归并排序算法会把要排序的序列分成长度相当的两个子序列,当分无可分每个子序列中只有一个数据的时候,就对子序列进行归并。

归并指的是把两个排序好的子序列合并成一个有序序列。该操作会一直重复执行,直到所有子序列归并为一个整体为止。

归并排序的过程

下面我们依然用图例过一遍归并排序对一个序列进行排序的过程。

图例出自—《我的第一本算法书》

首先,假设有下面这样一个待排序的序列

待排序的一串数字

将序列以对半分割的形式分成两段

用 Go 学算法--归并排序
把序列二分成两段

再继续对子序列进行对半分割,分解下去

用 Go 学算法--归并排序
再继续往下分

直到分无可分,每个子序列中只有一个数据

用 Go 学算法--归并排序
分解到每个子序列只有一个数据

接下来对分割后的数据进行合并,合并时需要将数字按从小到大的顺序排列。

用 Go 学算法--归并排序
合并序列时按大小排序

把 6 和 4 合并,合并时按照数字大小排序,合并后的顺序为【4,6】,接下来把 3 和 7 合并,合并后的顺序为【3,7】

![继续按照大小顺序合并后面的序列](/Users/klein/Library/Application Support/typora-user-images/image-20220405142734949.png)

下面,我们看看怎么合并【4,6】和【3,7】这两个序列。合并这种含有多个数字的子序列时,要先比较首位数字,再移动较小的数字。

用 Go 学算法--归并排序
合并多元素的序列时,从首位开始比较,小的先移动

这里要比较两个子序列的首位数字是4 和 3。由于 4 > 3,所以合并序列时先移动 3。

用 Go 学算法--归并排序
4 > 3,所以合并序列时先移动 3

接下来,再按照比较两个序列首位,小的先合并,大的留下来继续比较的规则合并两个序列。

4 小于 7,所以先移动 4 到合并的序列。

用 Go 学算法--归并排序
由于4<7,所以移动4

两个子序列剩下的元素中,6 小于 7,所以先移动 6

用 Go 学算法--归并排序
6 < 7 所以先移动 6

最后移动剩下的 7。

用 Go 学算法--归并排序
子序列最后剩下了7,合并到序列中去

递归执行上面的操作,直到所有的数字都合并到一个整体的序列上为止。

用 Go 学算法--归并排序
小序列合并成两个大的序列
用 Go 学算法--归并排序
再继续往完整的序列上合并

最后得到一个完整的排序完成的序列 。

用 Go 学算法--归并排序
排序完成的序列

归并排序的 Go 代码实现

下面上一个用归并排序的Go代码实现,代码很简单,实现步骤就都放在了代码的注释里,就不再多说啦,先收藏文章(也要记得点赞),等有时间了自己在电脑上运行一下试试吧。

package main

import "fmt"

// 自顶向下归并排序,排序范围在 [begin,end) 的数组
func MergeSort(array []int, begin int, end int) {
    // 元素数量大于1时才进入递归
    if end - begin > 1 {

        // 将数组一分为二,分为 array[begin,mid) 和 array[mid,high)
        mid := begin + (end-begin+1)/2

        // 先将左边排序好
        MergeSort(array, begin, mid)

        // 再将右边排序好
        MergeSort(array, mid, end)

        // 两个有序数组进行合并
        merge(array, begin, mid, end)
    }
}

// 归并操作
func merge(array []int, begin int, mid int, end int) {
    // 申请额外的空间来合并两个有序数组,这两个数组是 array[begin,mid),array[mid,end)
    leftSize := mid - begin         // 左边数组的长度
    rightSize := end - mid          // 右边数组的长度
    newSize := leftSize + rightSize // 辅助数组的长度
    result := make([]int0, newSize)

    l, r := 00
    for l < leftSize && r < rightSize {
        lValue := array[begin+l] // 左边数组的元素
        rValue := array[mid+r]   // 右边数组的元素
        // 小的元素先放进辅助数组里
        if lValue < rValue {
            result = append(result, lValue)
            l++
        } else {
            result = append(result, rValue)
            r++
        }
    }

    // 将剩下的元素追加到辅助数组后面
    result = append(result, array[begin+l:mid]...)
    result = append(result, array[mid+r:end]...)

    // 将辅助数组的元素复制回原数组,这样该辅助空间就可以被释放掉
    for i := 0; i < newSize; i++ {
        array[begin+i] = result[i]
    }
    return
}

归并排序的时间复杂度

老规矩,看完算法思想和实现步骤后,我们再来分析一下归并排序算法的时间复杂度。

归并排序中,分割序列所花费的时间不算在运行时间内 (可以当作序列本来就是分 割好的)。在合并两个已排好序的子序列时,只需依次比较处在序列首位数据的大小,然后移动较小的数据,因此只需花费和两个子序列的长度相应的运行时间。也就是说,完成一行归并所需的运行时间取决于这一行的数据量。

看一下这个图便能得知,无论哪一行都是 n 个数据,所以每行的运行时间都为 O(n)。

归并排序每一行的数据都是 n 个

而将长度为 n 的序列对半分割直到只有一个数据为止时,可以分成   行,因此,总共有 log2n 行。也就是说,总的运行时间为  ,这与前面讲到的快速排序相同。

今天的内容分享到这里就结束了,喜欢的话还请点赞、在看多多支持,点关注不迷路。

文章的图片示例来自书籍《我的第一本算法书》。


觉得有用就点个在看  👇👇👇