vlambda博客
学习文章列表

是什么让 Spring5 放弃了使用 Guava Cache?

来源:https://albenw.github.io/posts/a4ae1aa2/

概要

Caffeine是一个高性能,高命中率,低内存占用,near optimal 的本地缓存,简单来说它是Guava Cache的优化加强版,有些文章把Caffeine称为“新一代的缓存”、“现代缓存之王”。本文将重点讲解Caffeine的高性能设计,以及对应部分的源码分析。

与Guava Cache比较

大家都知道,Spring5即将放弃掉Guava Cache作为缓存机制,而改用Caffeine作为新的本地Cache的组件,这对于Caffeine来说是一个很大的肯定。为什么Spring会这样做呢?其实在Caffeine的Benchmarks里给出了好靓仔的数据,对读和写的场景,还有跟其他几个缓存工具进行了比较,Caffeine的性能都表现很突出。

使用Caffeine

Caffeine为了方便大家使用以及从Guava Cache切换过来(很有针对性啊~),借鉴了Guava Cache大部分的概念(诸如核心概念Cache、LoadingCache、CacheLoader、CacheBuilder等等),对于Caffeine的理解只要把它当作Guava Cache就可以了。

使用上,大家只要把Caffeine的包引进来,然后换一下cache的实现类,基本应该就没问题了。这对与已经使用过Guava Cache的同学来说没有任何难度,甚至还有一点熟悉的味道,如果你之前没有使用过Guava Cache,可以查看Caffeine的官方API说明文档,其中Population,Eviction,Removal,Refresh,Statistics,Cleanup,Policy等等这些特性都是跟Guava Cache基本一样的。

下面给出一个例子说明怎样创建一个Cache:

private static LoadingCache<StringString> cache = Caffeine.newBuilder()
            //最大个数限制
            .maximumSize(256L)
            //初始化容量
            .initialCapacity(1)
            //访问后过期(包括读和写)
            .expireAfterAccess(2, TimeUnit.DAYS)
            //写后过期
            .expireAfterWrite(2, TimeUnit.HOURS)
            //写后自动异步刷新
            .refreshAfterWrite(1, TimeUnit.HOURS)
            //记录下缓存的一些统计数据,例如命中率等
            .recordStats()
            //cache对缓存写的通知回调
            .writer(new CacheWriter<ObjectObject>() {
                @Override
                public void write(@NonNull Object key, @NonNull Object value) {
                    log.info("key={}, CacheWriter write", key);
                }

                @Override
                public void delete(@NonNull Object key, @Nullable Object value, @NonNull RemovalCause cause) {
                    log.info("key={}, cause={}, CacheWriter delete", key, cause);
                }
            })
            //使用CacheLoader创建一个LoadingCache
            .build(new CacheLoader<StringString>() {
                //同步加载数据
                @Nullable
                @Override
                public String load(@NonNull String key) throws Exception {
                    return "value_" + key;
                }

                //异步加载数据
                @Nullable
                @Override
                public String reload(@NonNull String key, @NonNull String oldValue) throws Exception {
                    return "value_" + key;
                }
            });

Caffeine的高性能设计

判断一个缓存的好坏最核心的指标就是命中率,影响缓存命中率有很多因素,包括业务场景、淘汰策略、清理策略、缓存容量等等。如果作为本地缓存, 它的性能的情况,资源的占用也都是一个很重要的指标。下面

我们来看看Caffeine在这几个方面是怎么着手的,如何做优化的。

(注:本文不会分析Caffeine全部源码,只会对核心设计的实现进行分析,但我建议读者把Caffeine的源码都涉猎一下,有个overview才能更好理解本文。如果你看过Guava Cache的源码也行,代码的数据结构和处理逻辑很类似的。

源码基于:(caffeine-2.8.0.jar

W-TinyLFU整体设计

上面说到淘汰策略是影响缓存命中率的因素之一,一般比较简单的缓存就会直接用到LFU(Least Frequently Used,即最不经常使用)或者LRU(Least Recently Used,即最近最少使用),而Caffeine就是使用了W-TinyLFU算法。

W-TinyLFU看名字就能大概猜出来,它是LFU的变种,也是一种缓存淘汰算法。那为什么要使用W-TinyLFU呢?

LRU和LFU的缺点
  • LRU实现简单,在一般情况下能够表现出很好的命中率,是一个“性价比”很高的算法,平时也很常用。虽然LRU对突发性的稀疏流量(sparse bursts)表现很好,但同时也会产生缓存污染,举例来说,如果偶然性的要对全量数据进行遍历,那么“历史访问记录”就会被刷走,造成污染。

  • 如果数据的分布在一段时间内是固定的话,那么LFU可以达到最高的命中率。但是LFU有两个缺点,第一,它需要给每个记录项维护频率信息,每次访问都需要更新,这是个巨大的开销;第二,对突发性的稀疏流量无力,因为前期经常访问的记录已经占用了缓存,偶然的流量不太可能会被保留下来,而且过去的一些大量被访问的记录在将来也不一定会使用上,这样就一直把“坑”占着了。

无论LRU还是LFU都有其各自的缺点,不过,现在已经有很多针对其缺点而改良、优化出来的变种算法。

TinyLFU

TinyLFU就是其中一个优化算法,它是专门为了解决LFU上述提到的两个问题而被设计出来的。

解决第一个问题是采用了Count–Min Sketch算法。

解决第二个问题是让记录尽量保持相对的“新鲜”(Freshness Mechanism),并且当有新的记录插入时,可以让它跟老的记录进行“PK”,输者就会被淘汰,这样一些老的、不再需要的记录就会被剔除。

下图是TinyLFU设计图(来自官方)

是什么让 Spring5 放弃了使用 Guava Cache?
统计频率Count–Min Sketch算法

如何对一个key进行统计,但又可以节省空间呢?(不是简单的使用HashMap,这太消耗内存了),注意哦,不需要精确的统计,只需要一个近似值就可以了,怎么样,这样场景是不是很熟悉,如果你是老司机,或许已经联想到布隆过滤器(Bloom Filter)的应用了。

没错,将要介绍的Count–Min Sketch的原理跟Bloom Filter一样,只不过Bloom Filter只有0和1的值,那么你可以把Count–Min Sketch看作是“数值”版的Bloom Filter。

更多关于Count–Min Sketch的介绍请自行搜索。

在TinyLFU中,近似频率的统计如下图所示:

是什么让 Spring5 放弃了使用 Guava Cache?

对一个key进行多次hash函数后,index到多个数组位置后进行累加,查询时取多个值中的最小值即可。

Caffeine对这个算法的实现在FrequencySketch类。但Caffeine对此有进一步的优化,例如Count–Min Sketch使用了二维数组,Caffeine只是用了一个一维的数组;再者,如果是数值类型的话,这个数需要用int或long来存储,但是Caffeine认为缓存的访问频率不需要用到那么大,只需要15就足够,一般认为达到15次的频率算是很高的了,而且Caffeine还有另外一个机制来使得这个频率进行衰退减半(下面就会讲到)。如果最大是15的话,那么只需要4个bit就可以满足了,一个long有64bit,可以存储16个这样的统计数,Caffeine就是这样的设计,使得存储效率提高了16倍。

Caffeine对缓存的读写(afterReadafterWrite方法)都会调用onAccesss方法,而onAccess方法里有一句:

frequencySketch().increment(key);

这句就是追加记录的频率,下面我们看看具体实现

//FrequencySketch的一些属性

//种子数
static final long[] SEED = { // A mixture of seeds from FNV-1a, CityHash, and Murmur3
    0xc3a5c85c97cb3127L0xb492b66fbe98f273L0x9ae16a3b2f90404fL0xcbf29ce484222325L};
static final long RESET_MASK = 0x7777777777777777L;
static final long ONE_MASK = 0x1111111111111111L;

int sampleSize;
//为了快速根据hash值得到table的index值的掩码
//table的长度size一般为2的n次方,而tableMask为size-1,这样就可以通过&操作来模拟取余操作,速度快很多,老司机都知道
int tableMask;
//存储数据的一维long数组
long[] table;
int size;

/**
 * Increments the popularity of the element if it does not exceed the maximum (15). The popularity
 * of all elements will be periodically down sampled when the observed events exceeds a threshold.
 * This process provides a frequency aging to allow expired long term entries to fade away.
 *
 * @param e the element to add
 */

public void increment(@NonNull E e) {
  if (isNotInitialized()) {
    return;
  }

  //根据key的hashCode通过一个哈希函数得到一个hash值
  //本来就是hashCode了,为什么还要再做一次hash?怕原来的hashCode不够均匀分散,再打散一下。
  int hash = spread(e.hashCode());
  //这句光看有点难理解
  //就如我刚才说的,Caffeine把一个long的64bit划分成16个等分,每一等分4个bit。
  //这个start就是用来定位到是哪一个等分的,用hash值低两位作为随机数,再左移2位,得到一个小于16的值
  int start = (hash & 3) << 2;

  //indexOf方法的意思就是,根据hash值和不同种子得到table的下标index
  //这里通过四个不同的种子,得到四个不同的下标index
  int index0 = indexOf(hash, 0);
  int index1 = indexOf(hash, 1);
  int index2 = indexOf(hash, 2);
  int index3 = indexOf(hash, 3);

  //根据index和start(+1, +2, +3)的值,把table[index]对应的等分追加1
  //这个incrementAt方法有点难理解,看我下面的解释
  boolean added = incrementAt(index0, start);
  added |= incrementAt(index1, start + 1);
  added |= incrementAt(index2, start + 2);
  added |= incrementAt(index3, start + 3);

  //这个reset等下说
  if (added && (++size == sampleSize)) {
    reset();
  }
}

/**
 * Increments the specified counter by 1 if it is not already at the maximum value (15).
 *
 * @param i the table index (16 counters)
 * @param j the counter to increment
 * @return if incremented
 */

boolean incrementAt(int i, int j) {
  //这个j表示16个等分的下标,那么offset就是相当于在64位中的下标(这个自己想想)
  int offset = j << 2;
  //上面提到Caffeine把频率统计最大定为15,即0xfL
  //mask就是在64位中的掩码,即1111后面跟很多个0
  long mask = (0xfL << offset);
  //如果&的结果不等于15,那么就追加1。等于15就不会再加了
  if ((table[i] & mask) != mask) {
    table[i] += (1L << offset);
    return true;
  }
  return false;
}

/**
 * Returns the table index for the counter at the specified depth.
 *
 * @param item the element's hash
 * @param i the counter depth
 * @return the table index
 */

int indexOf(int item, int i) {
  long hash = SEED[i] * item;
  hash += hash >>> 32;
  return ((int) hash) & tableMask;
}

/**
 * Applies a supplemental hash function to a given hashCode, which defends against poor quality
 * hash functions.
 */

int spread(int x) {
  x = ((x >>> 16) ^ x) * 0x45d9f3b;
  x = ((x >>> 16) ^ x) * 0x45d9f3b;
  return (x >>> 16) ^ x;
}

知道了追加方法,那么读取方法frequency就很容易理解了。

/**
 * Returns the estimated number of occurrences of an element, up to the maximum (15).
 *
 * @param e the element to count occurrences of
 * @return the estimated number of occurrences of the element; possibly zero but never negative
 */

@NonNegative
public int frequency(@NonNull E e) {
  if (isNotInitialized()) {
    return 0;
  }

  //得到hash值,跟上面一样
  int hash = spread(e.hashCode());
  //得到等分的下标,跟上面一样
  int start = (hash & 3) << 2;
  int frequency = Integer.MAX_VALUE;
  //循环四次,分别获取在table数组中不同的下标位置
  for (int i = 0; i < 4; i++) {
    int index = indexOf(hash, i);
    //这个操作就不多说了,其实跟上面incrementAt是一样的,定位到table[index] + 等分的位置,再根据mask取出计数值
    int count = (int) ((table[index] >>> ((start + i) << 2)) & 0xfL);
    //取四个中的较小值
    frequency = Math.min(frequency, count);
  }
  return frequency;
}

通过代码和注释或者读者可能难以理解,下图是我画出来帮助大家理解的结构图。

注意紫色虚线框,其中蓝色小格就是需要计算的位置:

是什么让 Spring5 放弃了使用 Guava Cache?
保新机制

为了让缓存保持“新鲜”,剔除掉过往频率很高但之后不经常的缓存,Caffeine有一个Freshness Mechanism。做法很简答,就是当整体的统计计数(当前所有记录的频率统计之和,这个数值内部维护)达到某一个值时,那么所有记录的频率统计除以2。

从上面的代码

//size变量就是所有记录的频率统计之,即每个记录加1,这个size都会加1
//sampleSize一个阈值,从FrequencySketch初始化可以看到它的值为maximumSize的10倍
if (added && (++size == sampleSize)) {
      reset();
}

看到reset方法就是做这个事情

/** Reduces every counter by half of its original value. */
void reset() {
  int count = 0;
  for (int i = 0; i < table.length; i++) {
    count += Long.bitCount(table[i] & ONE_MASK);
    table[i] = (table[i] >>> 1) & RESET_MASK;
  }
  size = (size >>> 1) - (count >>> 2);
}

关于这个reset方法,为什么是除以2,而不是其他,及其正确性,在最下面的参考资料的TinyLFU论文中3.3章节给出了数学证明,大家有兴趣可以看看。

增加一个Window?

Caffeine通过测试发现TinyLFU在面对突发性的稀疏流量(sparse bursts)时表现很差,因为新的记录(new items)还没来得及建立足够的频率就被剔除出去了,这就使得命中率下降。

于是Caffeine设计出一种新的policy,即Window Tiny LFU(W-TinyLFU),并通过实验和实践发现W-TinyLFU比TinyLFU表现的更好。

W-TinyLFU的设计如下所示(两图等价):

是什么让 Spring5 放弃了使用 Guava Cache?
是什么让 Spring5 放弃了使用 Guava Cache?

它主要包括两个缓存模块,主缓存是SLRU(Segmented LRU,即分段LRU),SLRU包括一个名为protected和一个名为probation的缓存区。通过增加一个缓存区(即Window Cache),当有新的记录插入时,会先在window区呆一下,就可以避免上述说的sparse bursts问题。

淘汰策略(eviction policy)

当window区满了,就会根据LRU把candidate(即淘汰出来的元素)放到probation区,如果probation区也满了,就把candidate和probation将要淘汰的元素victim,两个进行“PK”,胜者留在probation,输者就要被淘汰了。

而且经过实验发现当window区配置为总容量的1%,剩余的99%当中的80%分给protected区,20%分给probation区时,这时整体性能和命中率表现得最好,所以Caffeine默认的比例设置就是这个。

不过这个比例Caffeine会在运行时根据统计数据(statistics)去动态调整,如果你的应用程序的缓存随着时间变化比较快的话,那么增加window区的比例可以提高命中率,相反缓存都是比较固定不变的话,增加Main Cache区(protected区 +probation区)的比例会有较好的效果。

下面我们看看上面说到的淘汰策略是怎么实现的:

一般缓存对读写操作后都有后续的一系列“维护”操作,Caffeine也不例外,这些操作都在maintenance方法,我们将要说到的淘汰策略也在里面。

这方法比较重要,下面也会提到,所以这里只先说跟“淘汰策略”有关的evictEntriesclimb

/**
   * Performs the pending maintenance work and sets the state flags during processing to avoid
   * excess scheduling attempts. The read buffer, write buffer, and reference queues are
   * drained, followed by expiration, and size-based eviction.
   *
   * @param task an additional pending task to run, or {@code null} if not present
   */

  @GuardedBy("evictionLock")
  void maintenance(@Nullable Runnable task) {
    lazySetDrainStatus(PROCESSING_TO_IDLE);

    try {
      drainReadBuffer();

      drainWriteBuffer();
      if (task != null) {
        task.run();
      }

      drainKeyReferences();
      drainValueReferences();

      expireEntries();
      //把符合条件的记录淘汰掉
      evictEntries();
      //动态调整window区和protected区的大小
      climb();
    } finally {
      if ((drainStatus() != PROCESSING_TO_IDLE) || !casDrainStatus(PROCESSING_TO_IDLE, IDLE)) {
        lazySetDrainStatus(REQUIRED);
      }
    }
  }
 ```

 先说一下Caffeine对上面说到的W-TinyLFU策略的实现用到的数据结构:

 ```
 //最大的个数限制
long maximum;
//当前的个数
long weightedSize;
//window区的最大限制
long windowMaximum;
//window区当前的个数
long windowWeightedSize;
//protected区的最大限制
long mainProtectedMaximum;
//protected区当前的个数
long mainProtectedWeightedSize;
//下一次需要调整的大小(还需要进一步计算)
double stepSize;
//window区需要调整的大小
long adjustment;
//命中计数
int hitsInSample;
//不命中的计数
int missesInSample;
//上一次的缓存命中率
double previousSampleHitRate;

final FrequencySketch<K> sketch;
//window区的LRU queue(FIFO)
final AccessOrderDeque<Node<K, V>> accessOrderWindowDeque;
//probation区的LRU queue(FIFO)
final AccessOrderDeque<Node<K, V>> accessOrderProbationDeque;
//protected区的LRU queue(FIFO)
final AccessOrderDeque<Node<K, V>> accessOrderProtectedDeque;

以及默认比例设置(意思看注释)

/** The initial percent of the maximum weighted capacity dedicated to the main space. */
static final double PERCENT_MAIN = 0.99d;
/** The percent of the maximum weighted capacity dedicated to the main's protected space. */
static final double PERCENT_MAIN_PROTECTED = 0.80d;
/** The difference in hit rates that restarts the climber. */
static final double HILL_CLIMBER_RESTART_THRESHOLD = 0.05d;
/** The percent of the total size to adapt the window by. */
static final double HILL_CLIMBER_STEP_PERCENT = 0.0625d;
/** The rate to decrease the step size to adapt by. */
static final double HILL_CLIMBER_STEP_DECAY_RATE = 0.98d;
/** The maximum number of entries that can be transfered between queues. */

重点来了,evictEntriesclimb方法:

/** Evicts entries if the cache exceeds the maximum. */
@GuardedBy("evictionLock")
void evictEntries({
  if (!evicts()) {
    return;
  }
  //淘汰window区的记录
  int candidates = evictFromWindow();
  //淘汰Main区的记录
  evictFromMain(candidates);
}

/**
 * Evicts entries from the window space into the main space while the window size exceeds a
 * maximum.
 *
 * @return the number of candidate entries evicted from the window space
 */

//根据W-TinyLFU,新的数据都会无条件的加到admission window
//但是window是有大小限制,所以要“定期”做一下“维护”
@GuardedBy("evictionLock")
int evictFromWindow({
  int candidates = 0;
  //查看window queue的头部节点
  Node<K, V> node = accessOrderWindowDeque().peek();
  //如果window区超过了最大的限制,那么就要把“多出来”的记录做处理
  while (windowWeightedSize() > windowMaximum()) {
    // The pending operations will adjust the size to reflect the correct weight
    if (node == null) {
      break;
    }
    //下一个节点
    Node<K, V> next = node.getNextInAccessOrder();
    if (node.getWeight() != 0) {
      //把node定位在probation区
      node.makeMainProbation();
      //从window区去掉
      accessOrderWindowDeque().remove(node);
      //加入到probation queue,相当于把节点移动到probation区(晋升了)
      accessOrderProbationDeque().add(node);
      candidates++;
      //因为移除了一个节点,所以需要调整window的size
      setWindowWeightedSize(windowWeightedSize() - node.getPolicyWeight());
    }
    //处理下一个节点
    node = next;
  }

  return candidates;
}

evictFromMain方法:

/**
 * Evicts entries from the main space if the cache exceeds the maximum capacity. The main space
 * determines whether admitting an entry (coming from the window space) is preferable to retaining
 * the eviction policy's victim. This is decision is made using a frequency filter so that the
 * least frequently used entry is removed.
 *
 * The window space candidates were previously placed in the MRU position and the eviction
 * policy's victim is at the LRU position. The two ends of the queue are evaluated while an
 * eviction is required. The number of remaining candidates is provided and decremented on
 * eviction, so that when there are no more candidates the victim is evicted.
 *
 * @param candidates the number of candidate entries evicted from the window space
 */

//根据W-TinyLFU,从window晋升过来的要跟probation区的进行“PK”,胜者才能留下
@GuardedBy("evictionLock")
void evictFromMain(int candidates) {
  int victimQueue = PROBATION;
  //victim是probation queue的头部
  Node<K, V> victim = accessOrderProbationDeque().peekFirst();
  //candidate是probation queue的尾部,也就是刚从window晋升来的
  Node<K, V> candidate = accessOrderProbationDeque().peekLast();
  //当cache不够容量时才做处理
  while (weightedSize() > maximum()) {
    // Stop trying to evict candidates and always prefer the victim
    if (candidates == 0) {
      candidate = null;
    }

    //对candidate为null且victim为bull的处理
    if ((candidate == null) && (victim == null)) {
      if (victimQueue == PROBATION) {
        victim = accessOrderProtectedDeque().peekFirst();
        victimQueue = PROTECTED;
        continue;
      } else if (victimQueue == PROTECTED) {
        victim = accessOrderWindowDeque().peekFirst();
        victimQueue = WINDOW;
        continue;
      }

      // The pending operations will adjust the size to reflect the correct weight
      break;
    }

    //对节点的weight为0的处理
    if ((victim != null) && (victim.getPolicyWeight() == 0)) {
      victim = victim.getNextInAccessOrder();
      continue;
    } else if ((candidate != null) && (candidate.getPolicyWeight() == 0)) {
      candidate = candidate.getPreviousInAccessOrder();
      candidates--;
      continue;
    }

    // Evict immediately if only one of the entries is present
    if (victim == null) {
      @SuppressWarnings("NullAway")
      Node<K, V> previous = candidate.getPreviousInAccessOrder();
      Node<K, V> evict = candidate;
      candidate = previous;
      candidates--;
      evictEntry(evict, RemovalCause.SIZE, 0L);
      continue;
    } else if (candidate == null) {
      Node<K, V> evict = victim;
      victim = victim.getNextInAccessOrder();
      evictEntry(evict, RemovalCause.SIZE, 0L);
      continue;
    }

    // Evict immediately if an entry was collected
    K victimKey = victim.getKey();
    K candidateKey = candidate.getKey();
    if (victimKey == null) {
      @NonNull Node<K, V> evict = victim;
      victim = victim.getNextInAccessOrder();
      evictEntry(evict, RemovalCause.COLLECTED, 0L);
      continue;
    } else if (candidateKey == null) {
      candidates--;
      @NonNull Node<K, V> evict = candidate;
      candidate = candidate.getPreviousInAccessOrder();
      evictEntry(evict, RemovalCause.COLLECTED, 0L);
      continue;
    }

    //放不下的节点直接处理掉
    if (candidate.getPolicyWeight() > maximum()) {
      candidates--;
      Node<K, V> evict = candidate;
      candidate = candidate.getPreviousInAccessOrder();
      evictEntry(evict, RemovalCause.SIZE, 0L);
      continue;
    }

    //根据节点的统计频率frequency来做比较,看看要处理掉victim还是candidate
    //admit是具体的比较规则,看下面
    candidates--;
    //如果candidate胜出则淘汰victim
    if (admit(candidateKey, victimKey)) {
      Node<K, V> evict = victim;
      victim = victim.getNextInAccessOrder();
      evictEntry(evict, RemovalCause.SIZE, 0L);
      candidate = candidate.getPreviousInAccessOrder();
    } else {
      //如果是victim胜出,则淘汰candidate
      Node<K, V> evict = candidate;
      candidate = candidate.getPreviousInAccessOrder();
      evictEntry(evict, RemovalCause.SIZE, 0L);
    }
  }
}

/**
 * Determines if the candidate should be accepted into the main space, as determined by its
 * frequency relative to the victim. A small amount of randomness is used to protect against hash
 * collision attacks, where the victim's frequency is artificially raised so that no new entries
 * are admitted.
 *
 * @param candidateKey the key for the entry being proposed for long term retention
 * @param victimKey the key for the entry chosen by the eviction policy for replacement
 * @return if the candidate should be admitted and the victim ejected
 */

@GuardedBy("evictionLock")
boolean admit(K candidateKey, K victimKey) {
  //分别获取victim和candidate的统计频率
  //frequency这个方法的原理和实现上面已经解释了
  int victimFreq = frequencySketch().frequency(victimKey);
  int candidateFreq = frequencySketch().frequency(candidateKey);
  //谁大谁赢
  if (candidateFreq > victimFreq) {
    return true;

    //如果相等,candidate小于5都当输了
  } else if (candidateFreq <= 5) {
    // The maximum frequency is 15 and halved to 7 after a reset to age the history. An attack
    // exploits that a hot candidate is rejected in favor of a hot victim. The threshold of a warm
    // candidate reduces the number of random acceptances to minimize the impact on the hit rate.
    return false;
  }
  //如果相等且candidate大于5,则随机淘汰一个
  int random = ThreadLocalRandom.current().nextInt();
  return ((random & 127) == 0);
}

climb方法主要是用来调整window size的,使得Caffeine可以适应你的应用类型(如OLAP或OLTP)表现出最佳的命中率。

下图是官方测试的数据:

是什么让 Spring5 放弃了使用 Guava Cache?

我们看看window size的调整是怎么实现的。

调整时用到的默认比例数据:

//与上次命中率之差的阈值
static final double HILL_CLIMBER_RESTART_THRESHOLD = 0.05d;
//步长(调整)的大小(跟最大值maximum的比例)
static final double HILL_CLIMBER_STEP_PERCENT = 0.0625d;
//步长的衰减比例
static final double HILL_CLIMBER_STEP_DECAY_RATE = 0.98d;
 /** Adapts the eviction policy to towards the optimal recency / frequency configuration. */
//climb方法的主要作用就是动态调整window区的大小(相应的,main区的大小也会发生变化,两个之和为100%)。
//因为区域的大小发生了变化,那么区域内的数据也可能需要发生相应的移动。
@GuardedBy("evictionLock")
void climb() {
  if (!evicts()) {
    return;
  }
  //确定window需要调整的大小
  determineAdjustment();
  //如果protected区有溢出,把溢出部分移动到probation区。因为下面的操作有可能需要调整到protected区。
  demoteFromMainProtected();
  long amount = adjustment();
  if (amount == 0) {
    return;
  } else if (amount > 0) {
    //增加window的大小
    increaseWindow();
  } else {
    //减少window的大小
    decreaseWindow();
  }
}

下面分别展开每个方法来解释:

/** Calculates the amount to adapt the window by and sets {@link #adjustment()} accordingly. */
@GuardedBy("evictionLock")
void determineAdjustment({
  //如果frequencySketch还没初始化,则返回
  if (frequencySketch().isNotInitialized()) {
    setPreviousSampleHitRate(0.0);
    setMissesInSample(0);
    setHitsInSample(0);
    return;
  }
  //总请求量 = 命中 + miss
  int requestCount = hitsInSample() + missesInSample();
  //没达到sampleSize则返回
  //默认下sampleSize = 10 * maximum。用sampleSize来判断缓存是否足够”热“。
  if (requestCount < frequencySketch().sampleSize) {
    return;
  }

  //命中率的公式 = 命中 / 总请求
  double hitRate = (double) hitsInSample() / requestCount;
  //命中率的差值
  double hitRateChange = hitRate - previousSampleHitRate();
  //本次调整的大小,是由命中率的差值和上次的stepSize决定的
  double amount = (hitRateChange >= 0) ? stepSize() : -stepSize();
  //下次的调整大小:如果命中率的之差大于0.05,则重置为0.065 * maximum,否则按照0.98来进行衰减
  double nextStepSize = (Math.abs(hitRateChange) >= HILL_CLIMBER_RESTART_THRESHOLD)
      ? HILL_CLIMBER_STEP_PERCENT * maximum() * (amount >= 0 ? 1 : -1)
      : HILL_CLIMBER_STEP_DECAY_RATE * amount;
  setPreviousSampleHitRate(hitRate);
  setAdjustment((long) amount);
  setStepSize(nextStepSize);
  setMissesInSample(0);
  setHitsInSample(0);
}

/** Transfers the nodes from the protected to the probation region if it exceeds the maximum. */

//这个方法比较简单,减少protected区溢出的部分
@GuardedBy("evictionLock")
void demoteFromMainProtected({
  long mainProtectedMaximum = mainProtectedMaximum();
  long mainProtectedWeightedSize = mainProtectedWeightedSize();
  if (mainProtectedWeightedSize <= mainProtectedMaximum) {
    return;
  }

  for (int i = 0; i < QUEUE_TRANSFER_THRESHOLD; i++) {
    if (mainProtectedWeightedSize <= mainProtectedMaximum) {
      break;
    }

    Node<K, V> demoted = accessOrderProtectedDeque().poll();
    if (demoted == null) {
      break;
    }
    demoted.makeMainProbation();
    accessOrderProbationDeque().add(demoted);
    mainProtectedWeightedSize -= demoted.getPolicyWeight();
  }
  setMainProtectedWeightedSize(mainProtectedWeightedSize);
}

/**
 * Increases the size of the admission window by shrinking the portion allocated to the main
 * space. As the main space is partitioned into probation and protected regions (80% / 20%), for
 * simplicity only the protected is reduced. If the regions exceed their maximums, this may cause
 * protected items to be demoted to the probation region and probation items to be demoted to the
 * admission window.
 */


//增加window区的大小,这个方法比较简单,思路就像我上面说的
@GuardedBy("evictionLock")
void increaseWindow({
  if (mainProtectedMaximum() == 0) {
    return;
  }

  long quota = Math.min(adjustment(), mainProtectedMaximum());
  setMainProtectedMaximum(mainProtectedMaximum() - quota);
  setWindowMaximum(windowMaximum() + quota);
  demoteFromMainProtected();

  for (int i = 0; i < QUEUE_TRANSFER_THRESHOLD; i++) {
    Node<K, V> candidate = accessOrderProbationDeque().peek();
    boolean probation = true;
    if ((candidate == null) || (quota < candidate.getPolicyWeight())) {
      candidate = accessOrderProtectedDeque().peek();
      probation = false;
    }
    if (candidate == null) {
      break;
    }

    int weight = candidate.getPolicyWeight();
    if (quota < weight) {
      break;
    }

    quota -= weight;
    if (probation) {
      accessOrderProbationDeque().remove(candidate);
    } else {
      setMainProtectedWeightedSize(mainProtectedWeightedSize() - weight);
      accessOrderProtectedDeque().remove(candidate);
    }
    setWindowWeightedSize(windowWeightedSize() + weight);
    accessOrderWindowDeque().add(candidate);
    candidate.makeWindow();
  }

  setMainProtectedMaximum(mainProtectedMaximum() + quota);
  setWindowMaximum(windowMaximum() - quota);
  setAdjustment(quota);
}

/** Decreases the size of the admission window and increases the main's protected region. */
//同上increaseWindow差不多,反操作
@GuardedBy("evictionLock")
void decreaseWindow({
  if (windowMaximum() <= 1) {
    return;
  }

  long quota = Math.min(-adjustment(), Math.max(0, windowMaximum() - 1));
  setMainProtectedMaximum(mainProtectedMaximum() + quota);
  setWindowMaximum(windowMaximum() - quota);

  for (int i = 0; i < QUEUE_TRANSFER_THRESHOLD; i++) {
    Node<K, V> candidate = accessOrderWindowDeque().peek();
    if (candidate == null) {
      break;
    }

    int weight = candidate.getPolicyWeight();
    if (quota < weight) {
      break;
    }

    quota -= weight;
    setMainProtectedWeightedSize(mainProtectedWeightedSize() + weight);
    setWindowWeightedSize(windowWeightedSize() - weight);
    accessOrderWindowDeque().remove(candidate);
    accessOrderProbationDeque().add(candidate);
    candidate.makeMainProbation();
  }

  setMainProtectedMaximum(mainProtectedMaximum() - quota);
  setWindowMaximum(windowMaximum() + quota);
  setAdjustment(-quota);
}

以上,是Caffeine的W-TinyLFU策略的设计原理及代码实现解析。

异步的高性能读写

一般的缓存每次对数据处理完之后(读的话,已经存在则直接返回,不存在则load数据,保存,再返回;写的话,则直接插入或更新),但是因为要维护一些淘汰策略,则需要一些额外的操作,诸如:

  • 计算和比较数据的是否过期

  • 统计频率(像LFU或其变种)

  • 维护read queue和write queue

  • 淘汰符合条件的数据

  • 等等。。。

这种数据的读写伴随着缓存状态的变更,Guava Cache的做法是把这些操作和读写操作放在一起,在一个同步加锁的操作中完成,虽然Guava Cache巧妙地利用了JDK的ConcurrentHashMap(分段锁或者无锁CAS)来降低锁的密度,达到提高并发度的目的。但是,对于一些热点数据,这种做法还是避免不了频繁的锁竞争。Caffeine借鉴了数据库系统的WAL(Write-Ahead Logging)思想,即先写日志再执行操作,这种思想同样适合缓存的,执行读写操作时,先把操作记录在缓冲区,然后在合适的时机异步、批量地执行缓冲区中的内容。但在执行缓冲区的内容时,也是需要在缓冲区加上同步锁的,不然存在并发问题,只不过这样就可以把对锁的竞争从缓存数据转移到对缓冲区上。

ReadBuffer

在Caffeine的内部实现中,为了很好的支持不同的Features(如Eviction,Removal,Refresh,Statistics,Cleanup,Policy等等),扩展了很多子类,它们共同的父类是BoundedLocalCache,而readBuffer就是作为它们共有的属性,即都是用一样的readBuffer,看定义:

final Buffer<Node<K, V>> readBuffer;

readBuffer = evicts() || collectKeys() || collectValues() || expiresAfterAccess()
        ? new BoundedBuffer<>()
        : Buffer.disabled();

上面提到Caffeine对每次缓存的读操作都会触发afterRead

/**
 * Performs the post-processing work required after a read.
 *
 * @param node the entry in the page replacement policy
 * @param now the current time, in nanoseconds
 * @param recordHit if the hit count should be incremented
 */

void afterRead(Node<K, V> node, long now, boolean recordHit) {
  if (recordHit) {
    statsCounter().recordHits(1);
  }
  //把记录加入到readBuffer
  //判断是否需要立即处理readBuffer
  //注意这里无论offer是否成功都可以走下去的,即允许写入readBuffer丢失,因为这个
  boolean delayable = skipReadBuffer() || (readBuffer.offer(node) != Buffer.FULL);
  if (shouldDrainBuffers(delayable)) {
    scheduleDrainBuffers();
  }
  refreshIfNeeded(node, now);
}

 /**
   * Returns whether maintenance work is needed.
   *
   * @param delayable if draining the read buffer can be delayed
   */


  //caffeine用了一组状态来定义和管理“维护”的过程
  boolean shouldDrainBuffers(boolean delayable) {
    switch (drainStatus()) {
      case IDLE:
        return !delayable;
      case REQUIRED:
        return true;
      case PROCESSING_TO_IDLE:
      case PROCESSING_TO_REQUIRED:
        return false;
      default:
        throw new IllegalStateException();
    }
  }

重点看BoundedBuffer

/**
 * A striped, non-blocking, bounded buffer.
 *
 * @author ben.manes@gmail.com (Ben Manes)
 * @param <E> the type of elements maintained by this buffer
 */

final class BoundedBuffer<Eextends StripedBuffer<E>

它是一个striped、非阻塞、有界限的buffer,继承于StripedBuffer类。下面看看StripedBuffer的实现:

/**
 * A base class providing the mechanics for supporting dynamic striping of bounded buffers. This
 * implementation is an adaption of the numeric 64-bit {@link java.util.concurrent.atomic.Striped64}
 * class, which is used by atomic counters. The approach was modified to lazily grow an array of
 * buffers in order to minimize memory usage for caches that are not heavily contended on.
 *
 * @author dl@cs.oswego.edu (Doug Lea)
 * @author ben.manes@gmail.com (Ben Manes)
 */


abstract class StripedBuffer<Eimplements Buffer<E>

这个StripedBuffer设计的思想是跟Striped64类似的,通过扩展结构把竞争热点分离。

具体实现是这样的,StripedBuffer维护一个Buffer[]数组,每个元素就是一个RingBuffer,每个线程用自己threadLocalRandomProbe属性作为hash值,这样就相当于每个线程都有自己“专属”的RingBuffer,就不会产生竞争啦,而不是用key的hashCode作为hash值,因为会产生热点数据问题。

看看StripedBuffer的属性

/** Table of buffers. When non-null, size is a power of 2. */
//RingBuffer数组
transient volatile Buffer<E> @Nullable[] table;

//当进行resize时,需要整个table锁住。tableBusy作为CAS的标记。
static final long TABLE_BUSY = UnsafeAccess.objectFieldOffset(StripedBuffer.class, "tableBusy");
static final long PROBE = UnsafeAccess.objectFieldOffset(Thread.class, "threadLocalRandomProbe");

/** Number of CPUS. */
static final int NCPU = Runtime.getRuntime().availableProcessors();

/** The bound on the table size. */
//table最大size
static final int MAXIMUM_TABLE_SIZE = 4 * ceilingNextPowerOfTwo(NCPU);

/** The maximum number of attempts when trying to expand the table. */
//如果发生竞争时(CAS失败)的尝试次数
static final int ATTEMPTS = 3;

/** Table of buffers. When non-null, size is a power of 2. */
//核心数据结构
transient volatile Buffer<E> @Nullable[] table;

/** Spinlock (locked via CAS) used when resizing and/or creating Buffers. */
transient volatile int tableBusy;

/** CASes the tableBusy field from 0 to 1 to acquire lock. */
final boolean casTableBusy() {
  return UnsafeAccess.UNSAFE.compareAndSwapInt(this, TABLE_BUSY, 01);
}

/**
 * Returns the probe value for the current thread. Duplicated from ThreadLocalRandom because of
 * packaging restrictions.
 */

static final int getProbe() {
  return UnsafeAccess.UNSAFE.getInt(Thread.currentThread(), PROBE);
}

offer方法,当没初始化或存在竞争时,则扩容为2倍。

实际是调用RingBuffer的offer方法,把数据追加到RingBuffer后面。

@Override
public int offer(E e) {
  int mask;
  int result = 0;
  Buffer<E> buffer;
  //是否不存在竞争
  boolean uncontended = true;
  Buffer<E>[] buffers = table
  //是否已经初始化
  if ((buffers == null)
      || (mask = buffers.length - 1) < 0
      //用thread的随机值作为hash值,得到对应位置的RingBuffer
      || (buffer = buffers[getProbe() & mask]) == null
      //检查追加到RingBuffer是否成功
      || !(uncontended = ((result = buffer.offer(e)) != Buffer.FAILED))) {
    //其中一个符合条件则进行扩容
    expandOrRetry(e, uncontended);
  }
  return result;
}

/**
 * Handles cases of updates involving initialization, resizing, creating new Buffers, and/or
 * contention. See above for explanation. This method suffers the usual non-modularity problems of
 * optimistic retry code, relying on rechecked sets of reads.
 *
 * @param e the element to add
 * @param wasUncontended false if CAS failed before call
 */


//这个方法比较长,但思路还是相对清晰的。
@SuppressWarnings("PMD.ConfusingTernary")
final void expandOrRetry(E e, boolean wasUncontended) {
  int h;
  if ((h = getProbe()) == 0) {
    ThreadLocalRandom.current(); // force initialization
    h = getProbe();
    wasUncontended = true;
  }
  boolean collide = false// True if last slot nonempty
  for (int attempt = 0; attempt < ATTEMPTS; attempt++) {
    Buffer<E>[] buffers;
    Buffer<E> buffer;
    int n;
    if (((buffers = table) != null) && ((n = buffers.length) > 0)) {
      if ((buffer = buffers[(n - 1) & h]) == null) {
        if ((tableBusy == 0) && casTableBusy()) { // Try to attach new Buffer
          boolean created = false;
          try { // Recheck under lock
            Buffer<E>[] rs;
            int mask, j;
            if (((rs = table) != null) && ((mask = rs.length) > 0)
                && (rs[j = (mask - 1) & h] == null)) {
              rs[j] = create(e);
              created = true;
            }
          } finally {
            tableBusy = 0;
          }
          if (created) {
            break;
          }
          continue// Slot is now non-empty
        }
        collide = false;
      } else if (!wasUncontended) { // CAS already known to fail
        wasUncontended = true;      // Continue after rehash
      } else if (buffer.offer(e) != Buffer.FAILED) {
        break;
      } else if (n >= MAXIMUM_TABLE_SIZE || table != buffers) {
        collide = false// At max size or stale
      } else if (!collide) {
        collide = true;
      } else if (tableBusy == 0 && casTableBusy()) {
        try {
          if (table == buffers) { // Expand table unless stale
            table = Arrays.copyOf(buffers, n << 1);
          }
        } finally {
          tableBusy = 0;
        }
        collide = false;
        continue// Retry with expanded table
      }
      h = advanceProbe(h);
    } else if ((tableBusy == 0) && (table == buffers) && casTableBusy()) {
      boolean init = false;
      try { // Initialize table
        if (table == buffers) {
          @SuppressWarnings({"unchecked""rawtypes"})
          Buffer<E>[] rs = new Buffer[1];
          rs[0] = create(e);
          table = rs;
          init = true;
        }
      } finally {
        tableBusy = 0;
      }
      if (init) {
        break;
      }
    }
  }
}

最后看看RingBuffer,注意RingBuffer是BoundedBuffer的内部类。

/** The maximum number of elements per buffer. */
static final int BUFFER_SIZE = 16;

// Assume 4-byte references and 64-byte cache line (16 elements per line)
//256长度,但是是以16为单位,所以最多存放16个元素
static final int SPACED_SIZE = BUFFER_SIZE << 4;
static final int SPACED_MASK = SPACED_SIZE - 1;
static final int OFFSET = 16;    
//RingBuffer数组
final AtomicReferenceArray<E> buffer;

 //插入方法
 @Override
 public int offer(E e) {
   long head = readCounter;
   long tail = relaxedWriteCounter();
   //用head和tail来限制个数
   long size = (tail - head);
   if (size >= SPACED_SIZE) {
     return Buffer.FULL;
   }
   //tail追加16
   if (casWriteCounter(tail, tail + OFFSET)) {
     //用tail“取余”得到下标
     int index = (int) (tail & SPACED_MASK);
     //用unsafe.putOrderedObject设值
     buffer.lazySet(index, e);
     return Buffer.SUCCESS;
   }
   //如果CAS失败则返回失败
   return Buffer.FAILED;
 }

 //用consumer来处理buffer的数据
 @Override
 public void drainTo(Consumer<E> consumer) {
   long head = readCounter;
   long tail = relaxedWriteCounter();
   //判断数据多少
   long size = (tail - head);
   if (size == 0) {
     return;
   }
   do {
     int index = (int) (head & SPACED_MASK);
     E e = buffer.get(index);
     if (e == null) {
       // not published yet
       break;
     }
     buffer.lazySet(index, null);
     consumer.accept(e);
     //head也跟tail一样,每次递增16
     head += OFFSET;
   } while (head != tail);
   lazySetReadCounter(head);
 }

注意,ring buffer的size(固定是16个)是不变的,变的是head和tail而已。

总的来说ReadBuffer有如下特点:

  • 使用 Striped-RingBuffer来提升对buffer的读写

  • 用thread的hash来避开热点key的竞争

  • 允许写入的丢失

WriteBuffer

writeBuffer跟readBuffer不一样,主要体现在使用场景的不一样。本来缓存的一般场景是读多写少的,读的并发会更高,且afterRead显得没那么重要,允许延迟甚至丢失。写不一样,写afterWrite不允许丢失,且要求尽量马上执行。Caffeine使用MPSC(Multiple Producer / Single Consumer)作为buffer数组,实现在MpscGrowableArrayQueue类,它是仿照JCTools的MpscGrowableArrayQueue来写的。

MPSC允许无锁的高并发写入,但只允许一个消费者,同时也牺牲了部分操作。

MPSC我打算另外分析,这里不展开了。

TimerWheel

除了支持expireAfterAccess和expireAfterWrite之外(Guava Cache也支持这两个特性),Caffeine还支持expireAfter。因为expireAfterAccess和expireAfterWrite都只能是固定的过期时间,这可能满足不了某些场景,譬如记录的过期时间是需要根据某些条件而不一样的,这就需要用户自定义过期时间。

先看看expireAfter的用法

private static LoadingCache<StringString> cache = Caffeine.newBuilder()
        .maximumSize(256L)
        .initialCapacity(1)
        //.expireAfterAccess(2, TimeUnit.DAYS)
        //.expireAfterWrite(2, TimeUnit.HOURS)
        .refreshAfterWrite(1, TimeUnit.HOURS)
        //自定义过期时间
        .expireAfter(new Expiry<StringString>() {
            //返回创建后的过期时间
            @Override
            public long expireAfterCreate(@NonNull String key, @NonNull String value, long currentTime) {
                return 0;
            }

            //返回更新后的过期时间
            @Override
            public long expireAfterUpdate(@NonNull String key, @NonNull String value, long currentTime, @NonNegative long currentDuration) {
                return 0;
            }

            //返回读取后的过期时间
            @Override
            public long expireAfterRead(@NonNull String key, @NonNull String value, long currentTime, @NonNegative long currentDuration) {
                return 0;
            }
        })
        .recordStats()
        .build(new CacheLoader<StringString>() {
            @Nullable
            @Override
            public String load(@NonNull String key) throws Exception {
                return "value_" + key;
            }
        });

通过自定义过期时间,使得不同的key可以动态的得到不同的过期时间。

注意,我把expireAfterAccess和expireAfterWrite注释了,因为这两个特性不能跟expireAfter一起使用。

而当使用了expireAfter特性后,Caffeine会启用一种叫“时间轮”的算法来实现这个功能。

好,重点来了,为什么要用时间轮?

对expireAfterAccess和expireAfterWrite的实现是用一个AccessOrderDeque双端队列,它是FIFO的,因为它们的过期时间是固定的,所以在队列头的数据肯定是最早过期的,要处理过期数据时,只需要首先看看头部是否过期,然后再挨个检查就可以了。但是,如果过期时间不一样的话,这需要对accessOrderQueue进行排序&插入,这个代价太大了。于是,Caffeine用了一种更加高效、优雅的算法-时间轮。

时间轮的结构:

是什么让 Spring5 放弃了使用 Guava Cache?

因为在我的对时间轮分析的文章里已经说了时间轮的原理和机制了,所以我就不展开Caffeine对时间轮的实现了。

Caffeine对时间轮的实现在TimerWheel,它是一种多层时间轮(hierarchical timing wheels )。

看看元素加入到时间轮的schedule方法:

/**
 * Schedules a timer event for the node.
 *
 * @param node the entry in the cache
 */

public void schedule(@NonNull Node<K, V> node{
  Node<K, V> sentinel = findBucket(node.getVariableTime());
  link(sentinel, node);
}

/**
 * Determines the bucket that the timer event should be added to.
 *
 * @param time the time when the event fires
 * @return the sentinel at the head of the bucket
 */

Node<K, V> findBucket(long time{
  long duration = time - nanos;
  int length = wheel.length - 1;
  for (int i = 0; i < length; i++) {
    if (duration < SPANS[i + 1]) {
      long ticks = (time >>> SHIFT[i]);
      int index = (int) (ticks & (wheel[i].length - 1));
      return wheel[i][index];
    }
  }
  return wheel[length][0];
}

/** Adds the entry at the tail of the bucket's list. */
void link(Node<K, V> sentinel, Node<K, V> node{
  node.setPreviousInVariableOrder(sentinel.getPreviousInVariableOrder());
  node.setNextInVariableOrder(sentinel);

  sentinel.getPreviousInVariableOrder().setNextInVariableOrder(node);
  sentinel.setPreviousInVariableOrder(node);
}

其他

Caffeine还有其他的优化性能的手段,如使用软引用和弱引用、消除伪共享、CompletableFuture异步等等。

总结

Caffeien是一个优秀的本地缓存,通过使用W-TinyLFU算法, 高性能的readBuffer和WriteBuffer,时间轮算法等,使得它拥有高性能,高命中率(near optimal),低内存占用等特点。

参考资料

  • TinyLFU论文

  • Design Of A Modern Cache

  • Design Of A Modern Cache—Part Deux

  • Caffeine的github

特别推荐一个分享架构+算法的优质内容,还没关注的小伙伴,可以长按关注一下:

是什么让 Spring5 放弃了使用 Guava Cache?

是什么让 Spring5 放弃了使用 Guava Cache?

长按订阅更多精彩▼

如有收获,点个在看,诚挚感谢