Netty源码剖析四:解码和编码
一)先看2个问题,文尾有解答
1.netty解码器的抽象解码过程是怎样的?
2.netty如何把对象变成字节流,最终写入到socket里的?
二)netty中用于解码的顶层的抽象框架类是ByteToMessageDecoder类。类里面提供了用于解码的抽象框架,其中的decode()方法由子类去实现。
ByteToMessageDecoder类先通过Cumulator类将客户端传过来的数据进行汇集,然后在channelRead方法里调用子类的decode()方法将数据解码成用户定义的格式,最后将解析出来的对象,放入到out的list中,然后继续向下传递。
public interface Cumulator {
ByteBuf cumulate(ByteBufAllocator var1, ByteBuf var2, ByteBuf var3);
}
public static final ByteToMessageDecoder.Cumulator MERGE_CUMULATOR = new ByteToMessageDecoder.Cumulator() {
public ByteBuf cumulate(ByteBufAllocator alloc, ByteBuf cumulation, ByteBuf in) {
ByteBuf buffer;
if (cumulation.writerIndex() <= cumulation.maxCapacity() - in.readableBytes() && cumulation.refCnt() <= 1) {
buffer = cumulation;
} else {
buffer = ByteToMessageDecoder.expandCumulation(alloc, cumulation, in.readableBytes());
}
buffer.writeBytes(in);
in.release();
return buffer;
}
};
protected abstract void decode(ChannelHandlerContext var1, ByteBuf var2, List<Object> var3) throws Exception;
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
if (msg instanceof ByteBuf) {
CodecOutputList out = CodecOutputList.newInstance();
boolean var10 = false;
try {
var10 = true;
ByteBuf data = (ByteBuf)msg;
this.first = this.cumulation == null;
if (this.first) {
this.cumulation = data;
} else {
this.cumulation = this.cumulator.cumulate(ctx.alloc(), this.cumulation, data);
}
//将汇总后的cumulator数据传递给方法,进行解码
this.callDecode(ctx, this.cumulation, out);//开始解码
var10 = false;
} catch (DecoderException var11) {
throw var11;
} catch (Throwable var12) {
throw new DecoderException(var12);
} finally {
if (var10) {
protected void callDecode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) {
try {
while(true) {
if (in.isReadable()) {
int outSize = out.size();
if (outSize > 0) {
fireChannelRead(ctx, out, outSize);
out.clear();
if (ctx.isRemoved()) {
return;
}
outSize = 0;
}
int oldInputLength = in.readableBytes();
this.decode(ctx, in, out);//抽象的由子类实现的decode方法
if (!ctx.isRemoved()) {
if (outSize == out.size()) {
if (oldInputLength != in.readableBytes()) {
continue;
}
} else {
if (oldInputLength == in.readableBytes()) {
throw new DecoderException(StringUtil.simpleClassName(this.getClass()) + ".decode() did not read anything but decoded a message.");
}
if (!this.isSingleDecode()) {
continue;
}
}
}
}
return;
}
} catch (DecoderException var6) {
throw var6;
} catch (Throwable var7) {
throw new DecoderException(var7);
}
}
三)Netty中常见的几种解码类:
1.固定长度的解码器-FixedLengthFrameDecoder
2.行解码器-LineBasedFrameDecoder
3.基于分隔符的解码器-DelimiterBasedFrameDecoder
4基于长度域的解码器-LengthFieldBaseFrameDecoder
四)Netty中的编码通过MessageToByteEncoder类进行顶层的编码抽象。
通过继承MessageToByteEncoder类,然后复写他的write()方法,把一个对象转换成字节,然后调用writeAndFlush方法,将数据写入到底层的java的scoket中进行传播。
writeAndFlush()方法实际上是进行了两步操作,这两步操作是分开的。第一步是write方法,write是从尾部TailContext通过pipline一直向Head传播,复写write方法会将对象转换成字节,不写write方法会调用父类默认的方法会默认向前一直传播,一直到HeadContext那,HeadContext的处理:最终调用Unsafede write方法。分配一个对外直接内存,然后把数据放到里面,作为数据的底层传输介质;然后把数据封装成Entity, 写入到缓冲区里(这个缓冲区的结构是一个链表),这里有个最高水位64K, 超过这个,write不会被写入,还有一个最低水位32K,低于这个又变成可写
flush方法也会一直传播到HeadContext那,做的处理是:最终调用Unsafe的flush方法。调用jdk底层的api进行自旋写入。Jdk底层的标志:javachannel(), ByteBuffer.write
//HeadContext里的write方法
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
this.unsafe.write(msg, promise);
}
//Unsafe里的write方法
public final void write(Object msg, ChannelPromise promise) {
this.assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
this.safeSetFailure(promise, AbstractChannel.WRITE_CLOSED_CHANNEL_EXCEPTION);
ReferenceCountUtil.release(msg);
} else {
int size;
try {
msg = AbstractChannel.this.filterOutboundMessage(msg);
size = AbstractChannel.this.pipeline.estimatorHandle().size(msg);
if (size < 0) {
size = 0;
}
} catch (Throwable var6) {
this.safeSetFailure(promise, var6);
ReferenceCountUtil.release(msg);
return;
}
outboundBuffer.addMessage(msg, size, promise);
}
}
//将ByteBuf对象转换成DirectBuffer
protected final Object filterOutboundMessage(Object msg) {
if (msg instanceof ByteBuf) {
ByteBuf buf = (ByteBuf)msg;
return buf.isDirect() ? msg : this.newDirectBuffer(buf);
} else if (msg instanceof FileRegion) {
return msg;
} else {
throw new UnsupportedOperationException("unsupported message type: " + StringUtil.simpleClassName(msg) + EXPECTED_TYPES);
}
}
//将DirectBuffer封装成一个Entity放入到缓冲区中(插入写队列)
public void addMessage(Object msg, int size, ChannelPromise promise) {
ChannelOutboundBuffer.Entry entry = ChannelOutboundBuffer.Entry.newInstance(msg, size, total(msg), promise);
if (this.tailEntry == null) {
this.flushedEntry = null;
this.tailEntry = entry;
} else {
ChannelOutboundBuffer.Entry tail = this.tailEntry;
tail.next = entry;//是一个链表的结构
this.tailEntry = entry;
}
if (this.unflushedEntry == null) {
this.unflushedEntry = entry;
}
this.incrementPendingOutboundBytes((long)size, false);//判断最高水位是否还可写
}
//判断最高水位,如果超过最高水位,则标志成不可写状态
private void incrementPendingOutboundBytes(long size, boolean invokeLater) {
if (size != 0L) {
long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, size);
if (newWriteBufferSize > (long)this.channel.config().getWriteBufferHighWaterMark()) {
this.setUnwritable(invokeLater);
}
}
}
//默认的最高水位是64K
public final class WriteBufferWaterMark {
private static final int DEFAULT_LOW_WATER_MARK = 32768;
private static final int DEFAULT_HIGH_WATER_MARK = 65536;
public static final WriteBufferWaterMark DEFAULT = new WriteBufferWaterMark(32768, 65536, false);
private final int low;
private final int high;
五)文首的2个问题
1.netty解码器的抽象解码过程是怎样的?
通过 ByteToMessageDecoder顶层的抽象框架类来实现的。具体步骤。1.累加器Cumulate将字节累加起来。2调用子类的decode()具体实现。3将解析到的byteBuf对象放到out的那个List里,并会向下传播。
2.netty如何把对象变成字节流,最终写入到socket里的?
编码通过继承MessageToByteEncoder类,复写他的write方法来吧一个对象转换成字节。
然后调用writeAndFlush方法,这个方法先write, 后flush
免费领取程序员赚钱技术教程
- 长按识别关注 -
技术,职场,产品,思维
行业观察