vlambda博客
学习文章列表

C语言中的这个最大烦恼被解决!

引言

对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏。这些的确是消耗了开发人员大多数调试时间的事项。指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具。

本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密。本文内容包括:

1. 导致内存破坏的指针操作类型
2. 在使用动态内存分配时必须考虑的检查点
3. 导致内存泄漏的场景

如果您预先知道什么地方可能出错,那么您就能够小心避免陷阱,并消除大多数与指针和内存相关的问题。

啥是内存泄漏

内存泄露在维基百科中的解释如下:

在计算机科学中,内存泄漏指由于疏忽或错误造成程序未能释放已经不再使用的内存。内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,导致在释放该段内存之前就失去了对该段内存的控制,从而造成了内存的浪费。

在C++中出现内存泄露的主要原因就是程序猿在申请了内存后(malloc(), new),没有及时释放没用的内存空间,甚至消灭了指针导致该区域内存空间根本无法释放。

知道了出现内存泄露的原因就能知道如何应对内存泄露,即:不用了的内存空间记得释放,不释放留着过年哇!

内存泄漏可能会导致严重的后果:

●  程序运行后,随着时间占用了更多的内存,最后无内存可用而崩溃;
●  程序消耗了大量的内存,导致其他程序无法正常使用;
●  程序消耗了大量内存,导致消费者选用了别人的程序而不是你的;
●  经常做出内存泄露bug的程序猿被公司开出而贫困潦倒。


如何知道自己的程序存在内存泄露?

根据内存泄露的原因及其恶劣的后果,我们可以通过其主要表现来发现程序是否存在内存泄漏:程序长时间运行后内存占用率一直不断的缓慢的上升,而实际上在你的逻辑中并没有这么多的内存需求。

如何定位到泄露点呢?

根据原理,我们可以先review自己的代码,利用"查找"功能,查询new与delete,看看内存的申请与释放是不是成对释放的,这使你迅速发现一些逻辑较为简单的内存泄露情况。

如果依旧发生内存泄露,可以通过记录申请与释放的对象数目是否一致来判断。在类中追加一个静态变量 static int count;在构造函数中执行count++;在析构函数中执行count--;,通过在程序结束前将所有类析构,之后输出静态变量,看count的值是否为0,如果为0,则问题并非出现在该处,如果不为0,则是该类型对象没有完全释放。

检查类中申请的空间是否完全释放,尤其是存在继承父类的情况,看看子类中是否调用了父类的析构函数,有可能会因为子类析构时没有是否父类中申请的内存空间。

对于函数中申请的临时空间,认真检查,是否存在提前跳出函数的地方没有释放内存。

什么地方可能出错?

有几种问题场景可能会出现,从而可能在完成生成后导致问题。在处理指针时,您可以使用本文中的信息来避免许多问题。

未初始化的内存

在本例中,p 已被分配了 10 个字节。这 10 个字节可能包含垃圾数据,如图 1 所示。

char *p = malloc ( 10 );

C语言中的这个最大烦恼被解决!

图 1. 垃圾数据

如果在对这个 p 赋值前,某个代码段尝试访问它,则可能会获得垃圾值,您的程序可能具有不可预测的行为。p 可能具有您的程序从未曾预料到的值。

良好的习惯是始终结合使用 memset 和 malloc分配内存,或者使用 calloc。

char *p = malloc (10);
memset(p,’\0’,10);

现在,即使同一个代码段尝试在对 p 赋值前访问它,该代码段也能正确处理 Null 值(在理想情况下应具有的值),然后将具有正确的行为。

内存覆盖

由于 p 已被分配了 10 个字节,如果某个代码片段尝试向 p 写入一个 11 字节的值,则该操作将在不告诉您的情况下自动从其他某个位置“吃掉”一个字节。让我们假设指针 q 表示该内存。

C语言中的这个最大烦恼被解决!

图 2. 原始 q 内容

C语言中的这个最大烦恼被解决!

图 3. 覆盖后的 q 内容

结果,指针 q 将具有从未预料到的内容。即使您的模块编码得足够好,也可能由于某个共存模块执行某些内存操作而具有不正确的行为。下面的示例代码片段也可以说明这种场景。

char *name = (char *) malloc(11); 
// Assign some value to name
memcpy ( p,name,11); // Problem begins here

在本例中,memcpy 操作尝试将 11 个字节写到 p,而后者仅被分配了 10 个字节。

作为良好的实践,每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。一般情况下,memcpy 函数将是用于此目的的检查点。

内存读取越界

内存读取越界 (overread) 是指所读取的字节数多于它们应有的字节数。这个问题并不太严重,在此就不再详述了。下面的代码提供了一个示例。

char *ptr = (char *)malloc(10);
char name[20] ;
memcpy ( name,ptr,20); // Problem begins here

在本例中,memcpy 操作尝试从 ptr 读取 20 个字节,但是后者仅被分配了 10 个字节。这还会导致不希望的输出。

内存泄漏

内存泄漏可能真正令人讨厌。下面的列表描述了一些导致内存泄漏的场景。

  • 重新赋值
    我将使用一个示例来说明重新赋值问题。

char *memoryArea = malloc(10);
char *newArea = malloc(10);

这向如下面的图 4 所示的内存位置赋值。

C语言中的这个最大烦恼被解决!

图 4. 内存位置

memoryArea 和 newArea 分别被分配了 10 个字节,它们各自的内容如图 4 所示。如果某人执行如下所示的语句(指针重新赋值)……

memoryArea = newArea;

则它肯定会在该模块开发的后续阶段给您带来麻烦。

在上面的代码语句中,开发人员将 memoryArea 指针赋值给 newArea 指针。结果,memoryArea 以前所指向的内存位置变成了孤立的,如下面的图 5 所示。它无法释放,因为没有指向该位置的引用。这会导致 10 个字节的内存泄漏。

C语言中的这个最大烦恼被解决!

图 5. 内存泄漏

在对指针赋值前,请确保内存位置不会变为孤立的。

  • 首先释放父块
    假设有一个指针 memoryArea,它指向一个 10 字节的内存位置。该内存位置的第三个字节又指向某个动态分配的 10 字节的内存位置,如图 6 所示。

C语言中的这个最大烦恼被解决!

图 6. 动态分配的内存

free(memoryArea)

如果通过调用 free 来释放了 memoryArea,则 newArea 指针也会因此而变得无效。newArea 以前所指向的内存位置无法释放,因为已经没有指向该位置的指针。换句话说,newArea 所指向的内存位置变为了孤立的,从而导致了内存泄漏。

每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(在此例中为 newArea),并从那里开始释放,然后再遍历回父节点。

这里的正确实现应该为:

free( memoryArea->newArea);
free(memoryArea);
  • 返回值的不正确处理
    有时,某些函数会返回对动态分配的内存的引用。跟踪该内存位置并正确地处理它就成为了 calling 函数的职责。

char *func ( )
{
        return malloc(20); // make sure to memset this location to ‘\0’…
}

void callingFunc ( )
{
        func ( ); // Problem lies here
}

归还您所获得的

在开发组件时,可能存在大量的动态内存分配。您可能会忘了跟踪所有指针(指向这些内存位置),并且某些内存段没有释放,还保持分配给该程序。

始终要跟踪所有内存分配,并在任何适当的时候释放它们。事实上,可以开发某种机制来跟踪这些分配,比如在链表节点本身中保留一个计数器(但您还必须考虑该机制的额外开销)。

访问空指针

访问空指针是非常危险的,因为它可能使您的程序崩溃。始终要确保您不是 在访问空指针。



没有躲过的坑--指针(内存泄露)


C++被人骂娘最多的就是指针。


夜深人静的时候,拿出几个使用指针容易出现的坑儿。可能我的语言描述有些让人费劲,尽量用代码说话。

通过指向类的NULL指针调用类的成员函数

试图用一个null指针调用类的成员函数,导致崩溃:

#include <iostream>
using namespace std;
class A{int value;public:void dumb() const {cout << "dumb()\n";}void set(int x) {cout << "set()\n"; value=x;}int get() const {cout << "get()\n"; return value;}};
int main(){A *pA1 = new A;A *pA2 = NULL;
pA1->dumb();pA1->set(10);pA1->get();pA2->dumb();pA2->set(20);//崩溃pA2->get();
return 0;}

为什么会这样? 

通过非法指针调用函数,就相当于给函数传递了一个指向函数的非法指针! 
但是为什么pA2->dumb()会成功呢? 
因为导致崩溃的是访问了成员变量!!

使用已经释放的指针

struct X{int data;};
int foo(){struct X *pX;pX = (struct X *) malloc(sizeof (struct X));pX->data = 10;free(pX);...return pX->data;}

使用未初始化的指针

如果你这样写,编译器会提示你使用了未初始化的变量p。

void fooA()
{int *p;*p = 100;}


那么如果我释放一个初始化的指针呢?


void fooB(){int *p;free(p);}

结果是一样的!!

释放已经释放的指针
直接看看代码:

void fooA(){char *p;p = (char *)malloc(100);cout << "free(p)\n";free(p);cout << "free(p)\n";free(p);}


这样的问题也许不会立即使你的程序崩溃,那样后果更加严重!!

没有调用子类的析构函数
之前的博客讲过,父类的析构函数最好声明为虚!!

ParentClass *pObj = new ChildClass;
...delete pObj;


上述代码会造成崩溃,如果父类的析构函数不声明为虚,那么不会调用继承类的析构函数,造成内存泄露。

内存溢出

当我们拷贝字符串的时候,我们常常会用到 memcpy函数。这里特别需要注意的就是字符串结尾的null字符:

char *p = (char *)malloc(strlen(str));strcpy(p, str);


为了躲过这个坑,只需要把 strlen(str) 改为 strlen(str)+1。

记一次指针使用不当造成的内存泄露

刚写完一段代码,由于将很运行在移动设备上, 我决定先测试一下内存的使用量, 结果发现了很严重的内存泄漏, 在前前后后翻看了new 和delete并确认没有漏写的情况下, 泄露依然存在!调试后最终确认了问题是因为union的不当使用造成的, 下面开始还原现场:

typedef struct DATA_{ DATA_(int size = 10) { pVoid = new char[nSize]; this->size = size; } virtual ~DATA_() { if (pVoid) { delete pVoid; } } int nSize; void *pVoid;}DATA, *LPDATA;
struct STRUCT1{ STRUCT1(int count) { pVoid = new DATA[count]; this->count = count; } virtual ~STRUCT1() { if (pVoid) { delete pVoid; } } int count; union { void *pVoid; LPDATA pData; }}
int main(int argc, char* argv[]){ for( int i = 0; i < 1000; i++) { void *p = new STRUCT1( 10 ); delete p; } return 0;}

在上面这段代码中,STRUCT1中包含了若干个DATA结构,DATA结构又申请了默认为10byte大小的内存,并且内存在对象析构的时候会用delete回收。乍一看这个代码貌似不会泄露内存,其实不然,待我分析:

然而编译器并是那么智能的可以理解coder的意图,析构函数的调用是根据当前delete的指针类型来确定的,而(下面)这段代码却没有提供类型, 这导致了DATA_的析构函数将不会被调用,内存泄漏就在所难免了。

virtual ~STRUCT1() { if (pVoid) { delete pVoid;//问题在这, 应该使用delete pData; } }

总结

本文讨论了几种在使用动态内存分配时应该避免的陷阱。要避免内存相关的问题,良好的习惯是:

1.  始终结合使用 memset 和 malloc分配内存,或始终使用 calloc。
2.  每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。
3.  在对指针赋值前,要确保没有内存位置会变为孤立的。
4.  每当释放结构化的元素(而该元素又包含指向动态分配的内存位置的指针)时,都应首先遍历子内存位置并从那里开始释放,然后再遍历回父节点。

5. 始终正确处理返回动态分配的内存引用的函数返回值。
6. 每个 malloc 都要有一个对应的 free。
7. 确保您不是在访问空指针。

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。