数据结构--动态规划
01
初始动态规划
0-1 背包问题
对于一组不同重量、不可分割的物品,我们需要选择一些装入背包,在满足背包最大重量限制的前提下,背包中物品总重量的最大值是多少呢?
关于这个问题,可以用回溯算法,也就是穷举搜索所有可能的装法,然后找出满足条件的最大值,但是这种方法复杂度比较高,是指数级别的。
// 回溯算法实现。注意:我把输入的变量都定义成了成员变量。
private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2,2,4,6,3}; // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw) { // 调用 f(0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cw > maxW) maxW = cw;
return;
}
f(i+1, cw); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw + weight[i]); // 选择装第 i 个物品
}
}
那有没有什么规律,可以有效降低时间复杂度呢?那就举个例子、画个图看看。我们假设背包的最大承载重量是 9。我们有 5 个不同的物品,每个物品的重量分别是 2,2,4,6,3。如果我们把这个例子的回溯求解过程,用递归树画出来,就是下面这个样子:
递归树中的每个节点表示一种状态,我们用(i, cw)来表示。其中,i 表示将要决策第几个物品是否装入背包,cw 表示当前背包中物品的总重量。比如,(2,2)表示我们将要决策第 2 个物品是否装入背包,在决策前,背包中物品的总重量是 2。
从递归树中,你应该能会发现,有些子问题的求解是重复的,比如图中 f(2, 2) 和 f(3,4) 都被重复计算了两次。我们可以借助“备忘录”的解决方式,记录已经计算好的 f(i, cw),当再次计算到重复的 f(i, cw) 的时候,可以直接从备忘录中取出来用,就不用再递归计算了,这样就可以避免冗余计算。
private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2,2,4,6,3}; // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,默认值 false
public void f(int i, int cw) { // 调用 f(0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cw > maxW) maxW = cw;
return;
}
if (mem[i][cw]) return; // 重复状态
mem[i][cw] = true; // 记录 (i, cw) 这个状态
f(i+1, cw); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw + weight[i]); // 选择装第 i 个物品
}
}
这种解决方法非常好。实际上,它已经跟动态规划的执行效率基本上没有差别。但是,多一种方法就多一种解决思路,我们现在来看看动态规划是怎么做的。
我们把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个物品决策(放入或者不放入背包)完之后,背包中的物品的重量会有多种情况,也就是说,会达到多种不同的状态,对应到递归树中,就是有很多不同的节点。
我们把每一层重复的状态(节点)合并,只记录不同的状态,然后基于上一层的状态集合,来推导下一层的状态集合。我们可以通过合并每一层重复的状态,这样就保证每一层不同状态的个数都不会超过 w 个(w 表示背包的承载重量),也就是例子中的 9。于是,我们就成功避免了每层状态个数的指数级增长。
我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。
第 0 个(下标从 0 开始编号)物品的重量是 2,要么装入背包,要么不装入背包,决策完之后,会对应背包的两种状态,背包中物品的总重量是 0 或者 2。我们用 states[0][0]=true 和 states[0][2]=true 来表示这两种状态。
第 1 个物品的重量也是 2,基于之前的背包状态,在这个物品决策完之后,不同的状态有 3 个,背包中物品总重量分别是 0(0+0),2(0+2 or 2+0),4(2+2)。我们用 states[1][0]=true,states[1][2]=true,states[1][4]=true 来表示这三种状态。
以此类推,直到考察完所有的物品后,整个 states 状态数组就都计算好了。我把整个计算的过程画了出来,你可以看看。图中 0 表示 false,1 表示 true。我们只需要在最后一层,找一个值为 true 的最接近 w(这里是 9)的值,就是背包中物品总重量的最大值。
上面的过程,翻译成代码:
weight: 物品重量,n: 物品个数,w: 背包可承载重量
public int knapsack(int[] weight, int n, int w) {
boolean[][] states = new boolean[n][w+1]; // 默认值 false
states[0][0] = true; // 第一行的数据要特殊处理,可以利用哨兵优化
states[0][weight[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划状态转移
for (int j = 0; j <= w; ++j) { // 不把第 i 个物品放入背包
if (states[i-1][j] == true) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= w-weight[i]; ++j) { // 把第 i 个物品放入背包
if (states[i-1][j]==true) states[i][j+weight[i]] = true;
}
}
for (int i = w; i >= 0; --i) { // 输出结果
if (states[n-1][i] == true) return i;
}
return 0;
}
实际上,这就是一种用动态规划解决问题的思路。我们把问题分解为多个阶段,每个阶段对应一个决策。我们记录每一个阶段可达的状态集合(去掉重复的),然后通过当前阶段的状态集合,来推导下一个阶段的状态集合,动态地往前推进。这也是动态规划这个名字的由来。
而这个代码的时间复杂度也非常好分析,耗时最多的部分就是代码中的两层 for 循环,所以时间复杂度是 O(n*w)。n 表示物品个数,w 表示背包可以承载的总重量。
尽管动态规划的执行效率比较高,但是就刚刚的代码实现来说,我们需要额外申请一个 n 乘以 w+1 的二维数组,对空间的消耗比较多。所以,有时候,我们会说,动态规划是一种空间换时间的解决思路。
有什么办法可以降低空间消耗?
实际上,我们只需要一个大小为 w+1 的一维数组就可以解决这个问题。动态规划状态转移的过程,都可以基于这个一维数组来操作。具体的代码实现如下:
public static int knapsack2(int[] items, int n, int w) {
boolean[] states = new boolean[w+1]; // 默认值 false
states[0] = true; // 第一行的数据要特殊处理,可以利用哨兵优化
states[items[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划
for (int j = w-items[i]; j >= 0; --j) {// 把第 i 个物品放入背包
if (states[j]==true) states[j+items[i]] = true;
}
}
for (int i = w; i >= 0; --i) { // 输出结果
if (states[i] == true) return i;
}
return 0;
}
这里需要特别强调一下代码中的第 6 行,j 需要从大到小来处理。如果我们按照 j 从小到大处理的话,会出现 for 循环重复计算的问题。
0-1 背包问题升级版
刚刚讲的背包问题,只涉及背包重量和物品重量。我们现在引入物品价值这一变量。对于一组不同重量、不同价值、不可分割的物品,我们选择将某些物品装入背包,在满足背包最大重量限制的前提下,背包中可装入物品的总价值最大是多少?
这个问题依旧可以用回溯算法来解决。具体的实现思路,可以直接看代码:
private int maxV = Integer.MIN_VALUE; // 结果放到 maxV 中
private int[] items = {2,2,4,6,3}; // 物品的重量
private int[] value = {3,4,8,9,6}; // 物品的价值
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw, int cv) { // 调用 f(0, 0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cv > maxV) maxV = cv;
return;
}
f(i+1, cw, cv); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw+weight[i], cv+value[i]); // 选择装第 i 个物品
}
}
针对上面的代码,我们还是照例画出递归树。在递归树中,每个节点表示一个状态。现在我们需要 3 个变量(i, cw, cv)来表示一个状态。其中,i 表示即将要决策第 i 个物品是否装入背包,cw 表示当前背包中物品的总重量,cv 表示当前背包中物品的总价值。
在递归树中,有几个节点的 i 和 cw 是完全相同的,比如 f(2,2,4) 和 f(2,2,3)。在背包中物品总重量一样的情况下,f(2,2,4) 这种状态对应的物品总价值更大,我们可以舍弃 f(2,2,3) 这种状态,只需要沿着 f(2,2,4) 这条决策路线继续往下决策就可以。也就是说,对于 (i, cw) 相同的不同状态,那我们只需要保留 cv 值最大的那个,继续递归处理,其他状态不予考虑。
如果用回溯算法,这个问题就没法再用“备忘录”解决了。所以,我们就需要换一种思路,看看动态规划是不是更容易解决这个问题?
我们还是把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个阶段决策完之后,背包中的物品的总重量以及总价值,会有多种情况,也就是会达到多种不同的状态。
我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。不过这里数组存储的值不再是 boolean 类型的了,而是当前状态对应的最大总价值。我们把每一层中 (i, cw) 重复的状态(节点)合并,只记录 cv 值最大的那个状态,然后基于这些状态来推导下一层的状态。
public static int knapsack3(int[] weight, int[] value, int n, int w) {
int[][] states = new int[n][w+1];
for (int i = 0; i < n; ++i) { // 初始化 states
for (int j = 0; j < w+1; ++j) {
states[i][j] = -1;
}
}
states[0][0] = 0;
states[0][weight[0]] = value[0];
for (int i = 1; i < n; ++i) { // 动态规划,状态转移
for (int j = 0; j <= w; ++j) { // 不选择第 i 个物品
if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= w-weight[i]; ++j) { // 选择第 i 个物品
if (states[i-1][j] >= 0) {
int v = states[i-1][j] + value[i];
if (v > states[i][j+weight[i]]) {
states[i][j+weight[i]] = v;
}
}
}
}
// 找出最大值
int maxvalue = -1;
for (int j = 0; j <= w; ++j) {
if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j];
}
return maxvalue;
}
02
动态规划理论
“一个模型三个特征”理论
什么样的问题适合用动态规划来解决?换句话说,动态规划能解决的问题有什么规律可循?实际上,动态规划作为一个非常成熟的算法思想,很多人对此已经做了非常全面的总结。我把这部分理论总结为“一个模型三个特征”。
“一个模型”指的是动态规划适合解决的问题的模型。我把这个模型定义为“多阶段决策最优解模型”。我们一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。然后我们寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。
“三个特征”,它们分别是最优子结构、无后效性和重复子问题。
1. 最优子结构
最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。如果我们把最优子结构,对应到我们前面定义的动态规划问题模型上,那我们也可以理解为,后面阶段的状态可以通过前面阶段的状态推导出来。
2. 无后效性
无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。
3. 重复子问题
如果用一句话概括一下,那就是,不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。
“一个模型三个特征”实例剖析
假设我们有一个 n 乘以 n 的矩阵 w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?
先看看,这个问题是否符合“一个模型”?
从 (0, 0) 走到 (n-1, n-1),总共要走 2*(n-1) 步,也就对应着 2*(n-1) 个阶段。每个阶段都有向右走或者向下走两种决策,并且每个阶段都会对应一个状态集合。
我们把状态定义为 min_dist(i, j),其中 i 表示行,j 表示列。min_dist 表达式的值表示从 (0, 0) 到达 (i, j) 的最短路径长度。所以,这个问题是一个多阶段决策最优解问题,符合动态规划的模型。
再来看,这个问题是否符合“三个特征”?
我们可以用回溯算法来解决这个问题。如果自己写一下代码,画一下递归树,就会发现,递归树中有重复的节点。重复的节点表示,从左上角到节点对应的位置,有多种路线,这也能说明这个问题中存在重复子问题。
如果我们走到 (i, j) 这个位置,我们只能通过 (i-1, j),(i, j-1) 这两个位置移动过来,也就是说,我们想要计算 (i, j) 位置对应的状态,只需要关心 (i-1, j),(i, j-1) 两个位置对应的状态,并不关心棋子是通过什么样的路线到达这两个位置的。而且,我们仅仅允许往下和往右移动,不允许后退,所以,前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以,这个问题符合“无后效性”这一特征。
刚刚定义状态的时候,我们把从起始位置 (0, 0) 到 (i, j) 的最小路径,记作 min_dist(i, j)。因为我们只能往右或往下移动,所以,我们只有可能从 (i, j-1) 或者 (i-1, j) 两个位置到达 (i, j)。也就是说,到达 (i, j) 的最短路径要么经过 (i, j-1),要么经过 (i-1, j),而且到达 (i, j) 的最短路径肯定包含到达这两个位置的最短路径之一。换句话说就是,min_dist(i, j) 可以通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态推导出来。这就说明,这个问题符合“最优子结构”。
min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))
两种动态规划解题思路总结
1. 状态转移表法
一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。
找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法。
我们先画出一个状态表。状态表一般都是二维的,所以你可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程,翻译成代码,就是动态规划代码了。
尽管大部分状态表都是二维的,但是如果问题的状态比较复杂,需要很多变量来表示,那对应的状态表可能就是高维的,比如三维、四维。那这个时候,我们就不适合用状态转移表法来解决了。一方面是因为高维状态转移表不好画图表示,另一方面是因为人脑确实很不擅长思考高维的东西。
现在,来看一下,如何套用这个状态转移表法,来解决那个矩阵最短路径的问题?
从起点到终点,我们有很多种不同的走法。我们可以穷举所有走法,然后对比找出一个最短走法。不过如何才能无重复又不遗漏地穷举出所有走法呢?我们可以用回溯算法这个比较有规律的穷举算法。回溯算法的代码实现如下所示:
private int minDist = Integer.MAX_VALUE; // 全局变量或者成员变量
// 调用方式:minDistBacktracing(0, 0, 0, w, n);
public void minDistBT(int i, int j, int dist, int[][] w, int n) {
// 到达了 n-1, n-1 这个位置了,这里看着有点奇怪哈,你自己举个例子看下
if (i == n && j == n) {
if (dist < minDist) minDist = dist;
return;
}
if (i < n) { // 往下走,更新 i=i+1, j=j
minDistBT(i + 1, j, dist+w[i][j], w, n);
}
if (j < n) { // 往右走,更新 i=i, j=j+1
minDistBT(i, j+1, dist+w[i][j], w, n);
}
}
有了回溯代码之后,接下来,我们要画出递归树,以此来寻找重复子问题。在递归树中,一个状态(也就是一个节点)包含三个变量 (i, j, dist),其中 i,j 分别表示行和列,dist 表示从起点到达 (i, j) 的路径长度。从图中,我们看出,尽管 (i, j, dist) 不存在重复的,但是 (i, j) 重复的有很多。对于 (i, j) 重复的节点,我们只需要选择 dist 最小的节点,继续递归求解,其他节点就可以舍弃了。
既然存在重复子问题,我们就可以尝试看下,是否可以用动态规划来解决?
我们画出一个二维状态表,表中的行、列表示棋子所在的位置,表中的数值表示从起点到这个位置的最短路径。我们按照决策过程,通过不断状态递推演进,将状态表填好。为了方便代码实现,我们按行来进行依次填充。
public int minDistDP(int[][] matrix, int n) {
int[][] states = new int[n][n];
int sum = 0;
for (int j = 0; j < n; ++j) { // 初始化 states 的第一行数据
sum += matrix[0][j];
states[0][j] = sum;
}
sum = 0;
for (int i = 0; i < n; ++i) { // 初始化 states 的第一列数据
sum += matrix[i][0];
states[i][0] = sum;
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j < n; ++j) {
states[i][j] =
matrix[i][j] + Math.min(states[i][j-1], states[i-1][j]);
}
}
return states[n-1][n-1];
}
2. 状态转移方程法
状态转移方程法有点类似递归的解题思路。我们需要分析,某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,也就是所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,我们有两种代码实现方法,一种是递归加“备忘录”,另一种是迭代递推。
还是拿刚才的例子来举例。最优子结构前面已经分析过了,状态转移方程:
min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))
状态转移方程是解决动态规划的关键。如果我们能写出状态转移方程,那动态规划问题基本上就解决一大半了,而翻译成代码非常简单。但是很多动态规划问题的状态本身就不好定义,状态转移方程也就更不好想到。
下面用递归加“备忘录”的方式,将状态转移方程翻译成来代码。对于另一种实现方式,跟状态转移表法的代码实现是一样的,只是思路不同。
private int[][] matrix = {{1,3,5,9}, {2,1,3,4},{5,2,6,7},{6,8,4,3}};
private int n = 4;
private int[][] mem = new int[4][4];
public int minDist(int i, int j) { // 调用 minDist(n-1, n-1);
if (i == 0 && j == 0) return matrix[0][0];
if (mem[i][j] > 0) return mem[i][j];
int minLeft = Integer.MAX_VALUE;
if (j-1 >= 0) {
minLeft = minDist(i, j-1);
}
int minUp = Integer.MAX_VALUE;
if (i-1 >= 0) {
minUp = minDist(i-1, j);
}
int currMinDist = matrix[i][j] + Math.min(minLeft, minUp);
mem[i][j] = currMinDist;
return currMinDist;
}
贪心、分治、回溯和动态规划四种算法思想比较分析:
如果我们将这四种算法思想分一下类,那贪心、回溯、动态规划可以归为一类,而分治单独可以作为一类,因为它跟其他三个都不大一样。前三个算法解决问题的模型,都可以抽象成多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是,大部分都不能抽象成多阶段决策模型。
回溯算法是个“万金油”。基本上能用的动态规划、贪心解决的问题,我们都可以用回溯算法解决。回溯算法相当于穷举搜索。穷举所有的情况,然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就很低了。
尽管动态规划比回溯算法高效,但是,并不是所有问题,都可以用动态规划来解决。能用动态规划解决的问题,需要满足三个特征,最优子结构、无后效性和重复子问题。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。
贪心算法实际上是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性。
其中,最优子结构、无后效性跟动态规划中的无异。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,我们都选择当前看起来最优的决策,所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。
03
动态规划实战
如何量化两个字符串的相似度
如何量化两个字符串之间的相似程度,有一个非常著名的量化方法,那就是编辑距离(Edit Distance)。顾名思义,编辑距离指的就是,将一个字符串转化成另一个字符串,需要的最少编辑操作次数(比如增加一个字符、删除一个字符、替换一个字符)。编辑距离越大,说明两个字符串的相似程度越小;相反,编辑距离就越小,说明两个字符串的相似程度越大。对于两个完全相同的字符串来说,编辑距离就是 0。
根据所包含的编辑操作种类的不同,编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离和最长公共子串长度。其中,莱文斯坦距离允许增加、删除、替换字符这三个编辑操作,最长公共子串长度只允许增加、删除字符这两个编辑操作。而且,莱文斯坦距离和最长公共子串长度,从两个截然相反的角度,分析字符串的相似程度。莱文斯坦距离的大小,表示两个字符串差异的大小;而最长公共子串的大小,表示两个字符串相似程度的大小。
关于这两个计算方法,举例说明一下。这里面,两个字符串 mitcmu 和 mtacnu 的莱文斯坦距离是 3,最长公共子串长度是 4。
如何编程计算莱文斯坦距离
这个问题是求把一个字符串变成另一个字符串,需要的最少编辑次数。整个求解过程,涉及多个决策阶段,我们需要依次考察一个字符串中的每个字符,跟另一个字符串中的字符是否匹配,匹配的话如何处理,不匹配的话又如何处理。所以,这个问题符合多阶段决策最优解模型。
可以用最简单的回溯算法,回溯是一个递归处理的过程。如果 a[i] 与 b[j] 匹配,我们递归考察 a[i+1] 和 b[j+1]。如果 a[i] 与 b[j] 不匹配,那我们有多种处理方式可选:
可以删除 a[i],然后递归考察 a[i+1] 和 b[j];
可以删除 b[j],然后递归考察 a[i] 和 b[j+1];
可以在 a[i] 前面添加一个跟 b[j] 相同的字符,然后递归考察 a[i] 和 b[j+1];
可以在 b[j] 前面添加一个跟 a[i] 相同的字符,然后递归考察 a[i+1] 和 b[j];
可以将 a[i] 替换成 b[j],或者将 b[j] 替换成 a[i],然后递归考察 a[i+1] 和 b[j+1];
private char[] a = "mitcmu".toCharArray();
private char[] b = "mtacnu".toCharArray();
private int n = 6;
private int m = 6;
private int minDist = Integer.MAX_VALUE; // 存储结果
// 调用方式 lwstBT(0, 0, 0);
public lwstBT(int i, int j, int edist) {
if (i == n || j == m) {
if (i < n) edist += (n-i);
if (j < m) edist += (m - j);
if (edist < minDist) minDist = edist;
return;
}
if (a[i] == b[j]) { // 两个字符匹配
lwstBT(i+1, j+1, edist);
} else { // 两个字符不匹配
lwstBT(i + 1, j, edist + 1); // 删除 a[i] 或者 b[j] 前添加一个字符
lwstBT(i, j + 1, edist + 1); // 删除 b[j] 或者 a[i] 前添加一个字符
lwstBT(i + 1, j + 1, edist + 1); // 将 a[i] 和 b[j] 替换为相同字符
}
}
根据回溯算法的代码实现,我们可以画出递归树,看是否存在重复子问题。如果存在重复子问题,那我们就可以考虑能否用动态规划来解决;如果不存在重复子问题,那回溯就是最好的解决方法。
在递归树中,每个节点代表一个状态,状态包含三个变量 (i, j, edist),其中,edist 表示处理到 a[i] 和 b[j] 时,已经执行的编辑操作的次数。
在递归树中,(i, j) 两个变量重复的节点很多,比如 (3, 2) 和 (2, 3)。对于 (i, j) 相同的节点,我们只需要保留 edist 最小的,继续递归处理就可以了,剩下的节点都可以舍弃。所以,状态就从 (i, j, edist) 变成了 (i, j, min_edist),其中 min_edist 表示处理到 a[i] 和 b[j],已经执行的最少编辑次数。而状态 (i, j) 可能从 (i-1, j),(i, j-1),(i-1, j-1) 三个状态中的任意一个转移过来。
基于刚刚的分析,可以尝试着将把状态转移的过程,用公式写出来。即状态转移方程:
如果:a[i]!=b[j],那么:min_edist(i, j) 就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1, min_edist(i-1,j-1)+1)
如果:a[i]==b[j],那么:min_edist(i, j) 就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1,min_edist(i-1,j-1))
其中,min 表示求三数中的最小值。
了解了状态与状态之间的递推关系,再画出一个二维的状态表,按行依次来填充状态表中的每个值。
public int lwstDP(char[] a, int n, char[] b, int m) {
int[][] minDist = new int[n][m];
for (int j = 0; j < m; ++j) { // 初始化第 0 行:a[0..0] 与 b[0..j] 的编辑距离
if (a[0] == b[j]) minDist[0][j] = j;
else if (j != 0) minDist[0][j] = minDist[0][j-1]+1;
else minDist[0][j] = 1;
}
for (int i = 0; i < n; ++i) { // 初始化第 0 列:a[0..i] 与 b[0..0] 的编辑距离
if (a[i] == b[0]) minDist[i][0] = i;
else if (i != 0) minDist[i][0] = minDist[i-1][0]+1;
else minDist[i][0] = 1;
}
for (int i = 1; i < n; ++i) { // 按行填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]);
else minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]+1);
}
}
return minDist[n-1][m-1];
}
private int min(int x, int y, int z) {
int minv = Integer.MAX_VALUE;
if (x < minv) minv = x;
if (y < minv) minv = y;
if (z < minv) minv = z;
return minv;
}
如何编程计算最长公共子串长度
最长公共子串作为编辑距离中的一种,只允许增加、删除字符两种编辑操作。实际上,从本质上来说,它表征的也是两个字符串之间的相似程度。这个问题的解决思路,跟莱文斯坦距离的解决思路非常相似,也可以用动态规划解决。
每个状态还是包括三个变量 (i, j, max_lcs),max_lcs 表示 a[0…i] 和 b[0…j] 的最长公共子串长度。那 (i, j) 这个状态都是由哪些状态转移过来的呢?
我们先来看回溯的处理思路。我们从 a[0] 和 b[0] 开始,依次考察两个字符串中的字符是否匹配。
如果 a[i] 与 b[j] 互相匹配,我们将最大公共子串长度加一,并且继续考察 a[i+1] 和 b[j+1]。
如果 a[i] 与 b[j] 不匹配,最长公共子串长度不变,这个时候,有两个不同的决策路线:
①删除 a[i],或者在 b[j] 前面加上一个字符 a[i],然后继续考察 a[i+1] 和 b[j];
②删除 b[j],或者在 a[i] 前面加上一个字符 b[j],然后继续考察 a[i] 和 b[j+1];
反过来也就是说,如果我们要求 a[0…i] 和 b[0…j] 的最长公共长度 max_lcs(i, j),我们只有可能通过下面三个状态转移过来:
(i-1, j-1, max_lcs),其中 max_lcs 表示 a[0…i-1] 和 b[0…j-1] 的最长公共子串长度;
(i-1, j, max_lcs),其中 max_lcs 表示 a[0…i-1] 和 b[0…j] 的最长公共子串长度;
(i, j-1, max_lcs),其中 max_lcs 表示 a[0…i] 和 b[0…j-1] 的最长公共子串长度;
如果把这个转移过程,用状态转移方程写出来,就是下面这个样子:
如果:a[i]==b[j],那么:max_lcs(i, j) 就等于:
max(max_lcs(i-1,j-1)+1, max_lcs(i-1, j), max_lcs(i, j-1));
如果:a[i]!=b[j],那么:max_lcs(i, j) 就等于:
max(max_lcs(i-1,j-1), max_lcs(i-1, j), max_lcs(i, j-1));
其中 max 表示求三数中的最大值。
代码实现:
public int lcs(char[] a, int n, char[] b, int m) {
int[][] maxlcs = new int[n][m];
for (int j = 0; j < m; ++j) {// 初始化第 0 行:a[0..0] 与 b[0..j] 的 maxlcs
if (a[0] == b[j]) maxlcs[0][j] = 1;
else if (j != 0) maxlcs[0][j] = maxlcs[0][j-1];
else maxlcs[0][j] = 0;
}
for (int i = 0; i < n; ++i) {// 初始化第 0 列:a[0..i] 与 b[0..0] 的 maxlcs
if (a[i] == b[0]) maxlcs[i][0] = 1;
else if (i != 0) maxlcs[i][0] = maxlcs[i-1][0];
else maxlcs[i][0] = 0;
}
for (int i = 1; i < n; ++i) { // 填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]+1);
else maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]);
}
}
return maxlcs[n-1][m-1];
}
private int max(int x, int y, int z) {
int maxv = Integer.MIN_VALUE;
if (x > maxv) maxv = x;
if (y > maxv) maxv = y;
if (z > maxv) maxv = z;
return maxv;
}
案例
在搜索框中,一不小心输错单词时,搜索引擎会非常智能地检测出你的拼写错误,并且用对应的正确单词来进行搜索。这个功能是怎么实现的?
当用户在搜索框内,输入一个拼写错误的单词时,我们就拿这个单词跟词库中的单词一一进行比较,计算编辑距离,将编辑距离最小的单词,作为纠正之后的单词,提示给用户。这就是拼写纠错最基本的原理。不过,真正用于商用的搜索引擎,拼写纠错功能显然不会就这么简单。一方面,单纯利用编辑距离来纠错,效果并不一定好;另一方面,词库中的数据量可能很大,搜索引擎每天要支持海量的搜索,所以对纠错的性能要求很高。
针对纠错效果不好的问题,我们有很多种优化思路,这里介绍几种。
我们并不仅仅取出编辑距离最小的那个单词,而是取出编辑距离最小的 TOP 10,然后根据其他参数,决策选择哪个单词作为拼写纠错单词。比如使用搜索热门程度来决定哪个单词作为拼写纠错单词。
我们还可以用多种编辑距离计算方法,然后分别编辑距离最小的 TOP 10,然后求交集,用交集的结果,再继续优化处理。
我们还可以通过统计用户的搜索日志,得到最常被拼错的单词列表,以及对应的拼写正确的单词。搜索引擎在拼写纠错的时候,首先在这个最长被拼错单词列表中查找。如果一旦找到,直接返回对应的正确的单词。这样纠错的效果非常好。
我们还有更加高级一点的做法,引入个性化因素。针对每个用户,维护这个用户特有的搜索喜好,也就是常用的搜索关键词。当用户输入错误的单词的时候,我们首先在这个用户常用的搜索关键词中,计算编辑距离,查找编辑距离最小的单词。
针对纠错性能方面,也有相应的优化方式。讲两种分治的优化思路。
如果纠错功能的 TPS 不高,我们可以部署多台机器,每台机器运行一个独立的纠错功能。当有一个纠错请求的时候,我们通过负载均衡,分配到其中一台机器,来计算编辑距离,得到纠错单词。
如果纠错系统的响应时间太长,也就是,每个纠错请求处理时间过长,我们可以将纠错的词库,分割到很多台机器。当有一个纠错请求的时候,我们就将这个拼写错误的单词,同时发送到这多台机器,让多台机器并行处理,分别得到编辑距离最小的单词,然后再比对合并,最终决定出一个最优的纠错单词。