vlambda博客
学习文章列表

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟

前两天写一篇长达 8000 字的关于动态规划的文章

这篇文章更多讲解我平时做题的套路,不过由于篇幅过长,举了 4 个案例之后,没有讲解优化,今天这篇文章就来讲解下,对动态规划的优化如何下手,并且以前几天那篇文章的题作为例子直接讲优化,如果没看过的建议看一下(不看也行,我会直接给出题目以及没有优化前的代码):

优化核心:画图!画图!画图

没错,80% 的动态规划题都可以画图,其中 80% 的题都可以通过画图一下子知道怎么优化,当然,DP 也有一些很难的题,想优化可没那么容易,不过,今天我要讲的,是属于不怎么难,且最常见,面试笔试最经常考的难度的题。

下面我们直接通过三道题目来讲解优化,你会发现,这些题,优化过后,代码只有细微的改变,你只要会一两道,可以说是会了 80% 的题。

O(n*m) 空间复杂度优化成 O(n)

上次那个青蛙跳台阶的 dp 题是可以把空间复杂度 O( n) 优化成 O(1),本来打算从这道题讲起的,但想了下,想要学习 dp 优化的感觉至少都是 小小大佬了,所以就不讲了,就从二维数组的 dp 讲起。

案例1:最多路径数

问题描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

这是 leetcode 的 62 号题:https://leetcode-cn.com/problems/unique-paths/

这道题的 dp 转移公式是 dp[i] [j] = dp[i-1] [j] + dp[i] [j-1],代码如下

不懂的看我之前文章:

public static int uniquePaths(int m, int n) {
    if (m <= 0 || n <= 0) {
        return 0;
    }

    int[][] dp = new int[m][n]; // 
      // 初始化
      for(int i = 0; i < m; i++){
      dp[i][0] = 1;
    }
      for(int i = 0; i < n; i++){
      dp[0][i] = 1;
    }
        // 推导出 dp[m-1][n-1]
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[i][j] = dp[i-1][j] + dp[i][j-1];
        }
    }
    return dp[m-1][n-1];
}

这种做法的空间复杂度是 O(n * m),下面我们来讲解如何优化成 O(n)。

dp[i] [j] 是一个二维矩阵,我们来画个二维矩阵的图,对矩阵进行初始化

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

然后根据公式   dp[i][j] = dp[i-1][j] + dp[i][j-1] 来填充矩阵的其他值。下面我们先填充第二行的值。

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟

大家想一个问题,当我们要填充第三行的值的时候,我们需要用到第一行的值吗?答是不需要的,不行你试试,当你要填充第三,第四….第 n 行的时候,第一行的值永远不会用到,只有填充第二行的值时才会用到。

根据公式  dp[i][j] = dp[i-1][j] + dp[i][j-1],我们可以知道,当我们要计算第 i 行的值时,除了会用到第 i - 1 行外,其他第 1 至 第 i-2 行的值我们都是不需要用到的,也就是说,对于那部分用不到的值我们还有必要保存他们吗?

答是没必要,我们只需要用一个一维的 dp[] 来保存一行的历史记录就可以了。然后在计算的过程中,不断着更新 dp[] 的值。单说估计你可能不好理解,下面我就手把手来演示下这个过程。

1、刚开始初始化第一行,此时 dp[0..n-1] 的值就是第一行的值。

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

2、接着我们来一边填充第二行的值一边更新 dp[i] 的值,一边把第一行的值抛弃掉。

为了方便描述,下面我们用arr (i,j)表示矩阵中第 i 行 第 j 列的值。从 0 开始哈,就是说有第 0 行。

(1)、显然,矩阵(1, 0) 的值相当于以往的初始化值,为 1。然后这个时候矩阵 (0,0)的值就不在需要保存了,因为再也用不到了。

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

这个时候,我们也要跟着更新 dp[0] 的值了,刚开始 dp[0] = (0, 0),现在更新为 dp[0] = (1, 0)。

(2)、接着继续更新 (1, 1) 的值,根据之前的公式 (i, j) = (i-1, j) + (i, j- 1)。即 (1,1)=(0,1)+(1,0)= 2。

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

大家看图,以往二维的时候, dp[i][j] = dp[i-1] [j]+ dp[i][j-1]。现在转化成一维,不就是 dp[i] = dp[i] + dp[i-1] 吗?

即 dp[1] = dp[1] + dp[0],而且还动态帮我们更新了 dp[1] 的值。因为刚开始 dp[i] 的保存第一行的值的,现在更新为保存第二行的值。

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

(3)、同样的道理,按照这样的模式一直来计算第二行的值,顺便把第一行的值抛弃掉,结果如下
动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

此时,dp[i] 将完全保存着第二行的值,并且我们可以推导出公式

dp[i] = dp[i-1] + dp[i]

dp[i-1] 相当于之前的 dp[i-1][j],dp[i] 相当于之前的 dp[i][j-1]。

于是按照这个公式不停着填充到最后一行,结果如下:

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

最后 dp[n-1] 就是我们要求的结果了。所以优化之后,代码如下:


public static int uniquePaths(int m, int n) {
    if (m <= 0 || n <= 0) {
        return 0;
    }

    int[] dp = new int[n]; // 
      // 初始化
      for(int i = 0; i < n; i++){
      dp[i] = 1;
    }

        // 公式:dp[i] = dp[i-1] + dp[i]
    for (int i = 1; i < m; i++) {
        // 第 i 行第 0 列的初始值
        dp[0] = 1;
        for (int j = 1; j < n; j++) {
            dp[j] = dp[j-1] + dp[j];
        }
    }
    return dp[n-1];
}

案例2:编辑距离

接着我们来看昨天的另外一道题,就是编辑矩阵,这道题的优化和这一道有一点点的不同,上面这道 dp[i][j] 依赖于 dp[i-1][j] 和 dp[i][j-1]。而还有一种情况就是 dp[i][j] 依赖于 dp[i-1][j],dp[i-1][j-1] 和 dp[i][j-1]。

问题描述

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释: 
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

解答

昨天的代码如下所示,不懂的记得看之前的文章哈:

public int minDistance(String word1, String word2) {
    int n1 = word1.length();
    int n2 = word2.length();
    int[][] dp = new int[n1 + 1][n2 + 1];
    // dp[0][0...n2]的初始值
    for (int j = 1; j <= n2; j++) 
        dp[0][j] = dp[0][j - 1] + 1;
    // dp[0...n1][0] 的初始值
    for (int i = 1; i <= n1; i++) dp[i][0] = dp[i - 1][0] + 1;
        // 通过公式推出 dp[n1][n2]
    for (int i = 1; i <= n1; i++) {
        for (int j = 1; j <= n2; j++) {
              // 如果 word1[i] 与 word2[j] 相等。第 i 个字符对应下标是 i-1
            if (word1.charAt(i - 1) == word2.charAt(j - 1)){
                p[i][j] = dp[i - 1][j - 1];
            }else {
               dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
            }         
        }
    }
    return dp[n1][n2];  
}

没有优化之间的空间复杂度为 O(n*m)

大家可以自己动手做下,按照上面的那个模式,你会优化吗?

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

对于这道题其实也是一样的,如果要计算 第 i 行的值,我们最多只依赖第 i-1 行的值,不需要用到第 i-2 行及其以前的值,所以一样可以采用一维 dp 来处理的。

不过这个时候要注意,在上面的例子中,我们每次更新完 (i, j) 的值之后,就会把 (i, j-1) 的值抛弃,也就是说之前是一边更新 dp[i] 的值,一边把 dp[i] 的旧值抛弃的,不过在这道题中则不可以,因为我们还需要用到它。

哎呀,直接举例子看图吧,文字绕来绕去估计会绕晕你们。当我们要计算图中 (i,j) 的值的时候,在案例1 中,我们值需要用到 (i-1, j) 和 (i, j-1)。(看图中方格的颜色)

动态规划该如何优化?我总结了这些套路,以后优化就是分分钟
在这里插入图片描述

不过这道题中,我们还需要用到 (i-1, j-1) 这个值(但是这个值在以往的案例1 中,它会被抛弃掉)
在这里插入图片描述

所以呢,对于这道题,我们还需要一个额外的变量 pre 来时刻保存 (i-1,j-1) 的值。推导公式就可以从二维的

dp[i][j] = min(dp[i-1][j] , dp[i-1][j-1] , dp[i][j-1]) + 1

转化为一维的

dp[i] = min(dp[i-1], pre, dp[i]) + 1

所以呢,案例2 其实和案例1 差别不大,就是多了个变量来临时保存。最终代码如下(但是初学者话,代码也没那么好写)

代码如下
public int minDistance(String word1, String word2) {
    int n1 = word1.length();
    int n2 = word2.length();
    int[] dp = new int[n2 + 1];
    // dp[0...n2]的初始值
    for (int j = 0; j <= n2; j++) 
        dp[j] = j;
    // dp[j] = min(dp[j-1], pre, dp[j]) + 1
    for (int i = 1; i <= n1; i++) {
        int temp = dp[0];
        // 相当于初始化
        dp[0] = i;
        for (int j = 1; j <= n2; j++) {
            // pre 相当于之前的 dp[i-1][j-1]
            int pre = temp;
            temp = dp[j];
              // 如果 word1[i] 与 word2[j] 相等。第 i 个字符对应下标是 i-1
            if (word1.charAt(i - 1) == word2.charAt(j - 1)){
                dp[j] = pre;
            }else {
               dp[j] = Math.min(Math.min(dp[j - 1], pre), dp[j]) + 1;
            } 
            // 保存要被抛弃的值       
        }
    }
    return dp[n2]; 
}

总结

基本 80% 的二维矩阵 dp 都可以像上面的方法一样优化成 一维矩阵的 dp,核心就是要画图,看他们的值依赖,当然,还有很多其他比较难的优化,但是,我遇到的题中,大部分都是我上面这种类型的优化。后面如何遇到其他的,我会作为案例来讲,今天就先讲最普遍最通用的优化方案。记住,画二维 dp 的矩阵图,然后看元素之间的值依赖,然后就可以很清晰着知道该如何优化了。如果觉得有收获,不妨素质三连,嘻嘻

推荐阅读