二叉树中序遍历(递归和非递归)算法C语言实现
二叉树中序遍历的实现思想是:
访问当前节点的左子树;
访问根节点;
访问当前节点的右子树;
图 1 二叉树
以图 1 为例,采用中序遍历的思想遍历该二叉树的过程为:
访问该二叉树的根节点,找到 1;
遍历节点 1 的左子树,找到节点 2;
遍历节点 2 的左子树,找到节点 4;
由于节点 4 无左孩子,因此找到节点 4,并遍历节点 4 的右子树;
由于节点 4 无右子树,因此节点 2 的左子树遍历完成,访问节点 2;
遍历节点 2 的右子树,找到节点 5;
由于节点 5 无左子树,因此访问节点 5 ,又因为节点 5 没有右子树,因此节点 1 的左子树遍历完成,访问节点 1 ,并遍历节点 1 的右子树,找到节点 3;
遍历节点 3 的左子树,找到节点 6;
由于节点 6 无左子树,因此访问节点 6,又因为该节点无右子树,因此节点 3 的左子树遍历完成,开始访问节点 3 ,并遍历节点 3 的右子树,找到节点 7;
由于节点 7 无左子树,因此访问节点 7,又因为该节点无右子树,因此节点 1 的右子树遍历完成,即整棵树遍历完成;
因此,图 1 中二叉树采用中序遍历得到的序列为:
4 2 5 1 6 3 7
递归实现
二叉树的中序遍历采用的是递归的思想,因此可以递归实现,其 C 语言实现代码为:
#include <stdio.h>#include <string.h>#define TElemType int//构造结点的结构体typedef struct BiTNode{TElemType data;//数据域struct BiTNode *lchild,*rchild;//左右孩子指针}BiTNode,*BiTree;//初始化树的函数void CreateBiTree(BiTree *T){*T=(BiTNode*)malloc(sizeof(BiTNode));(*T)->data=1;(*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->lchild->data=2;(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->lchild->rchild->data=5;(*T)->lchild->rchild->lchild=NULL;(*T)->lchild->rchild->rchild=NULL;(*T)->rchild->data=3;(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->rchild->lchild->data=6;(*T)->rchild->lchild->lchild=NULL;(*T)->rchild->lchild->rchild=NULL;(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->rchild->rchild->data=7;(*T)->rchild->rchild->lchild=NULL;(*T)->rchild->rchild->rchild=NULL;(*T)->lchild->lchild->data=4;(*T)->lchild->lchild->lchild=NULL;(*T)->lchild->lchild->rchild=NULL;}//模拟操作结点元素的函数,输出结点本身的数值void displayElem(BiTNode* elem){printf("%d ",elem->data);}//中序遍历void INOrderTraverse(BiTree T){if (T) {INOrderTraverse(T->lchild);//遍历左孩子displayElem(T);//调用操作结点数据的函数方法INOrderTraverse(T->rchild);//遍历右孩子}//如果结点为空,返回上一层return;}int main() {BiTree Tree;CreateBiTree(&Tree);printf("中序遍历算法: \n");INOrderTraverse(Tree);}
运行结果:
中序遍历算法:
4 2 5 1 6 3 7
非递归实现
而递归的底层实现依靠的是栈存储结构,因此,二叉树的先序遍历既可以直接采用递归思想实现,也可以使用栈的存储结构模拟递归的思想实现。
中序遍历的非递归方式实现思想是:从根结点开始,遍历左孩子同时压栈,当遍历结束,说明当前遍历的结点没有左孩子,从栈中取出来调用操作函数,然后访问该结点的右孩子,继续以上重复性的操作。
除此之外,还有另一种实现思想:中序遍历过程中,只需将每个结点的左子树压栈即可,右子树不需要压栈。当结点的左子树遍历完成后,只需要以栈顶结点的右孩子为根结点,继续循环遍历即可。
两种非递归方法实现二叉树中序遍历的代码实现为:
#include <stdio.h>#include <string.h>#define TElemType intint top=-1;//top变量时刻表示栈顶元素所在位置//构造结点的结构体typedef struct BiTNode{TElemType data;//数据域struct BiTNode *lchild,*rchild;//左右孩子指针}BiTNode,*BiTree;//初始化树的函数void CreateBiTree(BiTree *T){*T=(BiTNode*)malloc(sizeof(BiTNode));(*T)->data=1;(*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->lchild->data=2;(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->lchild->rchild->data=5;(*T)->lchild->rchild->lchild=NULL;(*T)->lchild->rchild->rchild=NULL;(*T)->rchild->data=3;(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->rchild->lchild->data=6;(*T)->rchild->lchild->lchild=NULL;(*T)->rchild->lchild->rchild=NULL;(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));(*T)->rchild->rchild->data=7;(*T)->rchild->rchild->lchild=NULL;(*T)->rchild->rchild->rchild=NULL;(*T)->lchild->lchild->data=4;(*T)->lchild->lchild->lchild=NULL;(*T)->lchild->lchild->rchild=NULL;}//前序和中序遍历使用的进栈函数void push(BiTNode** a,BiTNode* elem){a[++top]=elem;}//弹栈函数void pop( ){if (top==-1) {return ;}top--;}//模拟操作结点元素的函数,输出结点本身的数值void displayElem(BiTNode* elem){printf("%d ",elem->data);}//拿到栈顶元素BiTNode* getTop(BiTNode**a){return a[top];}//中序遍历非递归算法void InOrderTraverse1(BiTree Tree){BiTNode* a[20];//定义一个顺序栈BiTNode * p;//临时指针push(a, Tree);//根结点进栈while (top!=-1) {//top!=-1说明栈内不为空,程序继续运行while ((p=getTop(a)) &&p){//取栈顶元素,且不能为NULLpush(a, p->lchild);//将该结点的左孩子进栈,如果没有左孩子,NULL进栈}pop();//跳出循环,栈顶元素肯定为NULL,将NULL弹栈if (top!=-1) {p=getTop(a);//取栈顶元素pop();//栈顶元素弹栈displayElem(p);push(a, p->rchild);//将p指向的结点的右孩子进栈}}}//中序遍历实现的另一种方法void InOrderTraverse2(BiTree Tree){BiTNode* a[20];//定义一个顺序栈BiTNode * p;//临时指针p=Tree;//当p为NULL或者栈为空时,表明树遍历完成while (p || top!=-1) {//如果p不为NULL,将其压栈并遍历其左子树if (p) {push(a, p);p=p->lchild;}//如果p==NULL,表明左子树遍历完成,需要遍历上一层结点的右子树else{p=getTop(a);pop();displayElem(p);p=p->rchild;}}}int main(){BiTree Tree;CreateBiTree(&Tree);printf("中序遍历算法1: \n");InOrderTraverse1(Tree);printf("\n中序遍历算法2: \n");InOrderTraverse2(Tree);}
运行结果
中序遍历算法1:
4 2 5 1 6 3 7
中序遍历算法2:
4 2 5 1 6 3 7
