Hash算法-对海量url判重
前面给大家讲了哈希表(散列)这种数据结构,那么使用哈希表来解决实际问题,那就是Hash算法了,我们一起来看看。
一、Hash算法的概念
Hash算法(Hash Algorithm),简称散列算法,也成哈希算法(英译),是将一个大文件映射成一个小串字符。与指纹一样,就是以较短的信息来保证文件的唯一性的标志,这种标志与文件的每一个字节都相关,而且难以找到逆向规律。
举个列子:
服务器存了10个文本文件,你现在想判断一个新的文本文件和那10个文件有没有一个是一样的。你不可能去比对每个文本里面的每个字节,很有可能,两个文本文件都是5000个字节,但是只有最后一位有所不同,但这样的,你前面4999位的比较就是毫无意义。那一个解决办法,就是在存储那10个文本文件的时候,都将每个文件映射成一个hash字符串。服务器只需要存储10个hash字符串,在判断的时候,只需要判断新的这个文本文件的hash值是否和那10个文件的hash值一致,那就可以解决这个问题了。
由于文件是无限的,而映射后的字符串能表示的位数是有限的。因此可能会存在不同的key对应相同的Hash值。这就存在碰撞的可能。
二、Hash算法的应用
java的数据结构中,很多类都有用到hash算法,比如String,HashMap。
1.String中的hashCode方法
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}
可以看到,这里使用了31来作为乘级因子,这是为什么呢?
选择数字31是因为它是一个奇质数,如果选择一个偶数,因为乘二相当于左移一位,可能会产生溢出,导致数值信息溢出。
这一点的优势并不明显,但这是一个传统(选择质数)。
同时,数字31有一个很好的特性,乘法运算可以被移位和减法运算来取代,来获取更好的性能,而且这一点可以由jvm来自动完成。31*i=(i<<5)-i
2.HashMap中hash值
存在的目的是加速键值对的查找,key的作用是为了将元素适当的放在各个桶里,对于抗碰撞的要求没那么高。
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
对key的hash计算,就是计算出key的hash值,并移动到低位,完成高低位的融合。
3.Hash在密码学中的应用
hash算法在密码学中主要是用于消息摘要和签名。换句话说,主要是对整个消息的完整性进行校验。
安全散列算法(英语:Secure Hash Algorithm,缩写为SHA),SHA家族的五个算法,分别是SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512,由美国国家安全局(NSA)所设计,并由美国国家标准与技术研究院(NIST)发布;是美国的政府标准。后四者有时并称为SHA-2。
三、使用hash来解决字符串判重/字符串匹配问题
遇见不定长问题可通过二分+hash降低复杂度
遇见定长字符串问题可通过尺取+hash来降低复杂度
二维hash的时候尺取方法就是把之前不需要的都变为0再加上当前行,将匹配字符串整体下移,来验证hash值是否相等
PS:尺取法:顾名思义,像尺子一样取一段,尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后根据实际情况不断地推进区间左右端点以得出答案。
例子1:
给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
腾讯面试题:A.txt和B.txt两个文件,A有1亿个qq号,B有100万个,用代码实现交、并、差…
1.思路
可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。
遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。
遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了
2.代码实现
参考自两个上亿行的大文件取交集
TODO:Java实现版本还未写
PS:如果允许小误差,也可以采用如下的布隆算法实现
import java.util.ArrayList;
import java.util.BitSet;
import java.util.List;
/**
* BloomFilter算法
*
* @author JYC506
*
*/
public class BloomFilter {
/*哈希函数*/
private List<IHashFunction> hashFuctionList;
/*构造方法*/
public BloomFilter() {
this.hashFuctionList = new ArrayList<IHashFunction>();
}
/*添加哈希函数类*/
public void addHashFunction(IHashFunction hashFunction) {
this.hashFuctionList.add(hashFunction);
}
/*删除hash函数*/
public void removeHashFunction(IHashFunction hashFunction) {
this.hashFuctionList.remove(hashFunction);
}
/*判断是否被包含*/
public boolean contain(BitSet bitSet, String str) {
for (IHashFunction hash : hashFuctionList) {
int hashCode = hash.toHashCode(str);
if(hashCode<0){
hashCode=-hashCode;
}
if (bitSet.get(hashCode) == false) {
return false;
}
}
return true;
}
/*添加到bitSet*/
public void toBitSet(BitSet bitSet, String str) {
for (IHashFunction hash : hashFuctionList) {
int hashCode = hash.toHashCode(str);
if(hashCode<0){
hashCode=-hashCode;
}
bitSet.set(hashCode, true);
}
}
public static void main(String[] args) {
BloomFilter bloomFilter=new BloomFilter();
/*添加3个哈希函数*/
bloomFilter.addHashFunction(new JavaHash());
bloomFilter.addHashFunction(new RSHash());
bloomFilter.addHashFunction(new SDBMHash());
/*长度为2的24次方*/
BitSet bitSet=new BitSet(1<<25);
/*判断test1很test2重复的字符串*/
String[] test1=new String[]{"哈哈","我","大家","逗比","有钱人性","小米","Iphone","helloWorld"};
for (String str1 : test1) {
bloomFilter.toBitSet(bitSet, str1);
}
String[] test2=new String[]{"哈哈","我的","大家","逗比","有钱的人性","小米","Iphone6s","helloWorld"};
for (String str2 : test2) {
if(bloomFilter.contain(bitSet, str2)){
System.out.println("'"+str2+"'是重复的");
}
}
}
}
/*哈希函数接口*/
interface IHashFunction {
int toHashCode(String str);
}
class JavaHash implements IHashFunction {
@Override
public int toHashCode(String str) {
return str.hashCode();
}
}
class RSHash implements IHashFunction {
@Override
public int toHashCode(String str) {
int b = 378551;
int a = 63689;
int hash = 0;
for (int i = 0; i < str.length(); i++) {
hash = hash * a + str.charAt(i);
a = a * b;
}
return hash;
}
}
class SDBMHash implements IHashFunction {
@Override
public int toHashCode(String str) {
int hash = 0;
for (int i = 0; i < str.length(); i++)
hash = str.charAt(i) + (hash << 6) + (hash << 16) - hash;
return hash;
}
}
例子2:
现有海量日志数据保存在一个超级大的文件中,该文件无法直接读入内存,要求从中提取某天出访问百度次数最多的那个IP。
从这一天的日志数据中把访问百度的IP取出来,逐个写入到一个大文件中;
注意到IP是32位的,最多有2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件;
找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率;
在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
参考分治法获取文件中出现频次最高100词
四、总结
简单点说,hash就是将任意长度的消息压缩成某一固定长度的消息摘要的函数。
可能会存在不同的key对应相同的Hash值,这就是存在碰撞的可能。
Hash算法是不可逆的,即不同通过Hash值逆向推出key的值。
处理海量数据问题思路:
分而治之/hash映射 + hash统计 + 堆/快速/归并排序;
双层桶划分
Bloom filter/Bitmap;
Trie树/数据库/倒排索引;
外排序;
分布式处理之Hadoop/Mapreduce。
参考资料:
https://blog.csdn.net/u014209205/article/details/80820263
https://blog.csdn.net/qq_38891827/article/details/80723483
https://www.cnblogs.com/wkfvawl/p/9016281.html
https://blog.csdn.net/consciousman/article/details/52348439
https://bbs.csdn.net/topics/370253735
https://www.cnblogs.com/aspirant/p/7154551.html
https://www.bbsmax.com/A/n2d9OwP4JD
https://www.2cto.com/kf/201701/586765.html
https://blog.csdn.net/weixin_33737774/article/details/85891625
https://blog.csdn.net/qingdujun/article/details/82343756
https://blog.csdn.net/u012173884/article/details/47419163
https://blog.csdn.net/samjustin1/article/details/52251180