vlambda博客
学习文章列表

spark实战之:分析维基百科网站统计数据(java版)

欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:原创文章分类汇总及配套源码,涉及Java、Docker、K8S、Devops等


在《》文中,我们获取到维基百科网站的网页点击统计数据,也介绍了数据的格式和内容,今天就用这些数据来练习基本的spark开发,开发语言是Java

实战环境信息

为了快速搭建spark集群环境,我是在docker下搭建的,您也可以选择用传统的方式来搭建,以下是参考文章:

  1. 如果您也打算用docker来搭建,请参考《 》,本次实战用到的docker-compose.yml内容如下:
version: "2.2"services: namenode: image: bde2020/hadoop-namenode:1.1.0-hadoop2.7.1-java8 container_name: namenode volumes: - ./hadoop/namenode:/hadoop/dfs/name - ./input_files:/input_files environment: - CLUSTER_NAME=test env_file: - ./hadoop.env ports: - 50070:50070  resourcemanager: image: bde2020/hadoop-resourcemanager:1.1.0-hadoop2.7.1-java8 container_name: resourcemanager depends_on: - namenode - datanode1 - datanode2 env_file: - ./hadoop.env  historyserver: image: bde2020/hadoop-historyserver:1.1.0-hadoop2.7.1-java8 container_name: historyserver depends_on: - namenode - datanode1 - datanode2 volumes: - ./hadoop/historyserver:/hadoop/yarn/timeline env_file: - ./hadoop.env  nodemanager1: image: bde2020/hadoop-nodemanager:1.1.0-hadoop2.7.1-java8 container_name: nodemanager1 depends_on: - namenode - datanode1 - datanode2 env_file: - ./hadoop.env  datanode1: image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 container_name: datanode1 depends_on: - namenode volumes: - ./hadoop/datanode1:/hadoop/dfs/data env_file: - ./hadoop.env  datanode2: image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 container_name: datanode2 depends_on: - namenode volumes: - ./hadoop/datanode2:/hadoop/dfs/data env_file: - ./hadoop.env  datanode3: image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 container_name: datanode3 depends_on: - namenode volumes: - ./hadoop/datanode3:/hadoop/dfs/data env_file: - ./hadoop.env
master: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: master command: bin/spark-class org.apache.spark.deploy.master.Master -h master hostname: master environment: MASTER: spark://master:7077 SPARK_CONF_DIR: /conf SPARK_PUBLIC_DNS: localhost links: - namenode expose: - 7001 - 7002 - 7003 - 7004 - 7005 - 7077 - 6066 ports: - 4040:4040 - 6066:6066 - 7077:7077 - 8080:8080 volumes: - ./conf/master:/conf - ./data:/tmp/data - ./jars:/root/jars
worker1: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: worker1 command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker1 environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 2g SPARK_WORKER_PORT: 8881 SPARK_WORKER_WEBUI_PORT: 8081 SPARK_PUBLIC_DNS: localhost links: - master expose: - 7012 - 7013 - 7014 - 7015 - 8881 volumes: - ./conf/worker1:/conf - ./data/worker1:/tmp/data
worker2: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: worker2 command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker2 environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 2g SPARK_WORKER_PORT: 8881 SPARK_WORKER_WEBUI_PORT: 8081 SPARK_PUBLIC_DNS: localhost links: - master expose: - 7012 - 7013 - 7014 - 7015 - 8881 volumes: - ./conf/worker2:/conf - ./data/worker2:/tmp/data
worker3: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: worker3 command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker3 environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 2g SPARK_WORKER_PORT: 8881 SPARK_WORKER_WEBUI_PORT: 8081 SPARK_PUBLIC_DNS: localhost links: - master expose: - 7012 - 7013 - 7014 - 7015 - 8881 volumes: - ./conf/worker3:/conf - ./data/worker3:/tmp/data
worker4: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: worker4 command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker4 environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 2g SPARK_WORKER_PORT: 8881 SPARK_WORKER_WEBUI_PORT: 8081 SPARK_PUBLIC_DNS: localhost links: - master expose: - 7012 - 7013 - 7014 - 7015 - 8881 volumes: - ./conf/worker4:/conf - ./data/worker4:/tmp/data
worker5: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: worker5 command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker5 environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 2g SPARK_WORKER_PORT: 8881 SPARK_WORKER_WEBUI_PORT: 8081 SPARK_PUBLIC_DNS: localhost links: - master expose: - 7012 - 7013 - 7014 - 7015 - 8881 volumes: - ./conf/worker5:/conf - ./data/worker5:/tmp/data
worker6: image: gettyimages/spark:2.3.0-hadoop-2.8 container_name: worker6 command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker6 environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 2g SPARK_WORKER_PORT: 8881 SPARK_WORKER_WEBUI_PORT: 8081 SPARK_PUBLIC_DNS: localhost links: - master expose: - 7012 - 7013 - 7014 - 7015 - 8881 volumes: - ./conf/worker6:/conf - ./data/worker6:/tmp/data
  1. 如果您打算基于传统方式搭建,请参考《 》;

sprak环境的基本情况如下所示:

以下是本次实战涉及的版本号:

  1. 操作系统:CentOS7
  2. hadoop:2.8
  3. spark:2.3
  4. docker:17.03.2-ce
  5. docker-compose:1.23.2

维基百科网站统计数据简介

先回顾一下维基百科网站统计数据的内容和格式,一行数据的内容如下所示:

aa.b User_talk:Sevela.p 1 5786

这一行由空格字符分割成了四个字段:

内容 意义
aa.b 项目名称,".b"表示wikibooks
User_talk:Sevela.p 网页的三级目录
1 一小时内的访问次数
5786 一小时内被请求的字节总数

上述内容可以还原为一个网址,如下图所示,对应的URL为:https://aa.wikibooks.org/wiki/User_talk:Sevela.pspark实战之:分析维基百科网站统计数据(java版)

实战功能简介

源码下载

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) [email protected]:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章源码在sparkdemo这个文件夹下,如下图红框所示:spark实战之:分析维基百科网站统计数据(java版)

详细开发

  1. 基于maven创建工程,pom.xml如下:
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion>
<groupId>com.bolingcavalry</groupId> <artifactId>sparkdemo</artifactId> <version>1.0-SNAPSHOT</version>
<properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties>
<dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.3.2</version> </dependency> </dependencies>
<build> <sourceDirectory>src/main/java</sourceDirectory> <testSourceDirectory>src/test/java</testSourceDirectory> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> <archive> <manifest> <mainClass></mainClass> </manifest> </archive> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>1.2.1</version> <executions> <execution> <goals> <goal>exec</goal> </goals> </execution> </executions> <configuration> <executable>java</executable> <includeProjectDependencies>false</includeProjectDependencies> <includePluginDependencies>false</includePluginDependencies> <classpathScope>compile</classpathScope> <mainClass>com.bolingcavalry.sparkdemo.app.WikiRank</mainClass> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> </configuration> </plugin> </plugins> </build></project>
  1. 创建一个数据结构类PageInfo,在运行过程中会用到,里面记录了业务所需的字段:
package com.bolingcavalry.sparkdemo.bean;
import java.io.Serializable;import java.util.LinkedList;import java.util.List;
/** * @Description: 数据结构类 * @author: willzhao E-mail: [email protected] * @date: 2019/2/10 15:33 */public class PageInfo implements Serializable { /** * 还原的url地址 */ private String url;
/** * urldecode之后的三级域名 */ private String name;
/** * 该三级域名的请求次数 */ private int requestTimes;
/** * 该地址被请求的字节总数 */ private long requestLength;
/** * 对应的原始字段 */ private List<String> raws = new LinkedList<>();

public String getName() { return name; }
public void setName(String name) { this.name = name; }
public int getRequestTimes() { return requestTimes; }
public void setRequestTimes(int requestTimes) { this.requestTimes = requestTimes; }
public long getRequestLength() { return requestLength; }
public void setRequestLength(long requestLength) { this.requestLength = requestLength; }
public List<String> getRaws() { return raws; }
public void setRaws(List<String> raws) { this.raws = raws; }
public String getUrl() { return url; }
public void setUrl(String url) { this.url = url; }}
  1. 对于前面提到的例子,"aa.b User_talk:Sevela.p 1 5786"对应的网址是"https://aa.wikibooks.org/wiki/User_talk:Sevela.p",这个转换逻辑被做成了一个静态方法,这样就能把每一行记录对应的地址还原出来了,如下所示:
package com.bolingcavalry.sparkdemo.util;
import org.apache.commons.lang3.StringUtils;
/** * @Description: 常用的静态工具放置在此 * @author: willzhao E-mail: [email protected] * @date: 2019/2/16 9:01 */public class Tools {
/** * 域名的格式化模板 */ private static final String URL_TEMPALTE = "https://%s/wiki/%s";
/** * 根据项目名称和三级域名还原完整url, * 还原逻辑来自:https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw * @param project * @param thirdLvPath * @return */ public static String getUrl(String project, String thirdLvPath){ //如果入参不合法,就返回固定格式的错误提示 if(StringUtils.isBlank(project) || StringUtils.isBlank(thirdLvPath)){ return "1. invalid param (" + project + ")(" + thirdLvPath + ")"; }
//检查project中是否有"." int dotOffset = project.indexOf('.');
//如果没有".",就用project+".wikipedia.org"作为一级域名 if(dotOffset<0){ return String.format(URL_TEMPALTE, project + ".wikipedia.org", thirdLvPath); }
//如果有".",就用"."之后的字符串按照不同的逻辑转换 String code = project.substring(dotOffset);
//".mw"属于移动端网页,统计的逻辑略微复杂,详情参考网页链接,这里不作处理直接返回固定信息 if(".mw".equals(code)){ return "mw page (" + project + ")(" + thirdLvPath + ")"; }
String firstLvPath = null;
//就用"."之后的字符串按照不同的逻辑转换 switch(code){ case ".b": firstLvPath = ".wikibooks.org"; break; case ".d": firstLvPath = ".wiktionary.org"; break; case ".f": firstLvPath = ".wikimediafoundation.org"; break; case ".m": firstLvPath = ".wikimedia.org"; break; case ".n": firstLvPath = ".wikinews.org"; break; case ".q": firstLvPath = ".wikiquote.org"; break; case ".s": firstLvPath = ".wikisource.org"; break; case ".v": firstLvPath = ".wikiversity.org"; break; case ".voy": firstLvPath = ".wikivoyage.org"; break; case ".w": firstLvPath = ".mediawiki.org"; break; case ".wd": firstLvPath = ".wikidata.org"; break; }
if(null==firstLvPath){ return "2. invalid param (" + project + ")(" + thirdLvPath + ")"; }
//还原地址 return String.format(URL_TEMPALTE, project.substring(0, dotOffset) + firstLvPath, thirdLvPath); }


public static void main(String[] args){ String str = "abc.123456";
System.out.println(str.substring(str.indexOf('.'))); }}
  1. 接下来是spark应用的源码,主要是创建PageInfo对象,以及map、reduce、排序等逻辑,代码中已有注释说明,就不再赘述:
package com.bolingcavalry.sparkdemo.app;

import com.bolingcavalry.sparkdemo.bean.PageInfo;import com.bolingcavalry.sparkdemo.util.Tools;import org.apache.commons.lang3.StringUtils;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import scala.Tuple2;
import java.net.URLDecoder;import java.text.SimpleDateFormat;import java.util.Date;import java.util.List;
/** * @Description: 根据wiki的统计来查找最高访问量的文章 * @author: willzhao E-mail: [email protected] * @date: 2019/2/8 17:21 */public class WikiRank {
private static final Logger logger = LoggerFactory.getLogger(WikiRank.class);

private static final int TOP = 100;
public static void main(String[] args) { if(null==args || args.length<2 || StringUtils.isEmpty(args[0]) || StringUtils.isEmpty(args[1])) { logger.error("invalid params!"); }

String hdfsHost = args[0]; String hdfsPort = args[1];
SparkConf sparkConf = new SparkConf().setAppName("Spark WordCount Application (java)");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
String hdfsBasePath = "hdfs://" + hdfsHost + ":" + hdfsPort; //文本文件的hdfs路径 String inputPath = hdfsBasePath + "/input/*";
//输出结果文件的hdfs路径 String outputPath = hdfsBasePath + "/output/" + new SimpleDateFormat("yyyyMMddHHmmss").format(new Date());
logger.info("input path : {}", inputPath); logger.info("output path : {}", outputPath);
logger.info("import text"); //导入文件 JavaRDD<String> textFile = javaSparkContext.textFile(inputPath);
logger.info("do map operation"); JavaPairRDD<String, PageInfo> counts = textFile //过滤掉无效的数据 .filter((Function<String, Boolean>) v1 -> { if(StringUtils.isBlank(v1)){ return false; }
//分割为数组 String[] array = v1.split(" ");
/** * 以下情况都要过滤掉 * 1. 名称无效(array[1]) * 2. 请求次数无效(array[2) * 3. 请求总字节数无效(array[3) */ if(null==array || array.length<4 || StringUtils.isBlank(array[1]) || !StringUtils.isNumeric(array[2]) || !StringUtils.isNumeric(array[3])){ logger.error("find invalid data [{}]", v1); return false; }
return true; }) //将每一行转成一个PageInfo对象 .map((Function<String, PageInfo>) v1 -> { String[] array = v1.split(" ");
PageInfo pageInfo = new PageInfo();
try { pageInfo.setName(URLDecoder.decode(array[1], "UTF-8")); }catch (Exception e){ //有的字符串没有做过urlencode,此时做urldecode可能抛出异常(例如abc%),此时用原来的内容作为name即可 pageInfo.setName(array[1]); }
pageInfo.setUrl(Tools.getUrl(array[0], array[1]));
pageInfo.setRequestTimes(Integer.valueOf(array[2])); pageInfo.setRequestLength(Long.valueOf(array[3])); pageInfo.getRaws().add(v1);
return pageInfo; }) //转成键值对,键是url,值是PageInfo对象 .mapToPair(pageInfo -> new Tuple2<>(pageInfo.getUrl(), pageInfo)) //按照url做reduce,将请求次数累加 .reduceByKey((Function2<PageInfo, PageInfo, PageInfo>) (v1, v2) -> { v2.setRequestTimes(v2.getRequestTimes() + v1.getRequestTimes()); v2.getRaws().addAll(v1.getRaws()); return v2; });
logger.info("do convert"); //先将key和value倒过来,再按照key排序 JavaPairRDD<Integer, PageInfo> sorts = counts //key和value颠倒,生成新的map .mapToPair(tuple2 -> new Tuple2<>(tuple2._2().getRequestTimes(), tuple2._2())) //按照key倒排序 .sortByKey(false);
logger.info("take top " + TOP); //取前10个 List<Tuple2<Integer, PageInfo>> top = sorts.take(TOP);
StringBuilder sbud = new StringBuilder("top "+ top + " word :\n");
//打印出来 for(Tuple2<Integer, PageInfo> tuple2 : top){ sbud.append(tuple2._2().getName()) .append("\t") .append(tuple2._1()) .append("\n"); }
logger.info(sbud.toString());
logger.info("merge and save as file"); //分区合并成一个,再导出为一个txt保存在hdfs javaSparkContext .parallelize(top) .coalesce(1) .map( tuple2 -> new Tuple2<>(tuple2._2().getRequestTimes(), tuple2._2().getName() + " ### " + tuple2._2().getUrl() +" ### " + tuple2._2().getRaws().toString()) ) .saveAsTextFile(outputPath);
logger.info("close context"); //关闭context javaSparkContext.close(); }}
  1. 编码完成后,在pom.xml所在目录下编译构建jar包:
mvn clean package -Dmaven.test.skip=true
  1. 编译成功后,target目录下的 sparkdemo-1.0-SNAPSHOT.jar就是应用jar包;
  2. 将sparkdemo-1.0-SNAPSHOT.jar提交到spark服务器上,我这里用的是docker环境,通过文件夹映射将容器的目录和宿主机目录对应起来,只要将文件放入宿主机的jars目录即可,您需要按照自己的实际情况上传;

提交任务

  1. 当前电脑上,维基百科网站的统计数据文件保存在目录 /input_files/input
  2. 将维基百科网站的统计数据文件提交到hdfs,我这边用的是docker环境,提交命令如下:
docker exec namenode hdfs dfs -put /input_files/input /
  1. 提交成功后,在hdfs的web页面可见/input目录下的数据,如下: spark实战之:分析维基百科网站统计数据(java版)
  2. 将jar文件上传到spark服务再提交任务,我用的是docker环境,命令如下:
docker exec -it master spark-submit \--class com.bolingcavalry.sparkdemo.app.WikiRank \--executor-memory 1g \--total-executor-cores 12 \/root/jars/sparkdemo-1.0-SNAPSHOT.jar \namenode \8020

上述命令调动了12个executor,每个内存为1G,请您按照自己环境的实际情况来配置;5. 由于本次要处理的文件较多(24个128兆的文件),因此耗时较长,需要耐心等待,您也可以减少上传文件数量来缩减处理时间,以下是web页面显示的处理情况:6. 处理完成后,在控制台会打印简单的排名信息:

en 111840450Main_Page 61148163ja 20336203es 18133852Заглавная_страница 16997475de 12537288ru 10127971fr 9296777it 9011481pt 5904807id 3472100tr 3089611pl 3051718ar 3023412nl 2372696zh 1987233sv 1845525fa 1687804ko 1511408commons 1138613fi 1123291th 1012375vi 1007987he 822433Wikipedia:Hauptseite 767106cs 750085hu 687040Wikipédia:Accueil_principal 597885da 512714no 507885Special:Search 493995ro 488945uk 419609Special:NewItem 414436hi 399883Antoninus_Pius 345542el 342715Hoofdpagina 287517tl 274145bg 252691Wikipedia:Portada 250932Liste_des_automobiles_Ferrari 237985hr 228896メインページ 227591Начална_страница 220605Okto 211002Proyecto_40 207534
  1. 也可以去hdfs查看更详细的输出内容,先查找到输出文件所在目录:
root@willzhao-deepin:~# docker exec namenode hdfs dfs -ls /output/Found 3 itemsdrwxr-xr-x - root supergroup 0 2019-02-16 00:53 /output/20190216005136drwxr-xr-x - root supergroup 0 2019-02-16 01:50 /output/20190216014759drwxr-xr-x - root supergroup 0 2019-02-16 02:41 /output/20190216021144root@willzhao-deepin:~# docker exec namenode hdfs dfs -ls /output/20190216021144Found 2 items-rw-r--r-- 3 root supergroup 0 2019-02-16 02:41 /output/20190216021144/_SUCCESS-rw-r--r-- 3 root supergroup 105181 2019-02-16 02:41 /output/20190216021144/part-00000

可见输出文件为/output/20190216021144/part-000008. 用cat命令查看输出文件内容,以下是部分内容:

(63364,2016_Summer_Olympics ### https://en.wikipedia.org/wiki/2016_Summer_Olympics ### [en 2016_Summer_Olympics 3396 274589952, en 2016_Summer_Olympics 3015 252640325, en 2016_Summer_Olympics 3136 260875102, en 2016_Summer_Olympics 3094 257683527, en 2016_Summer_Olympics 2302 189633601, en 2016_Summer_Olympics 2532 211137547, en 2016_Summer_Olympics 2073 174153850, en 2016_Summer_Olympics 2425 201808231, en 2016_Summer_Olympics 2869 244961273, en 2016_Summer_Olympics 2647 227408637, en 2016_Summer_Olympics 3173 276779678, en 2016_Summer_Olympics 3242 261206575, en 2016_Summer_Olympics 1871 168316209, en 2016_Summer_Olympics 2234 204588727, en 2016_Summer_Olympics 2857 239335148, en 2016_Summer_Olympics 2345 197360752, en 2016_Summer_Olympics 2949 248777317, en 2016_Summer_Olympics 2040 171690687, en 2016_Summer_Olympics 4006 332402716, en 2016_Summer_Olympics 3137 274672915, en 2016_Summer_Olympics 1895 156985346, en 2016_Summer_Olympics 2089 180840058, en 2016_Summer_Olympics 2062 177089806, en 2016_Summer_Olympics 1975 169774986])(62904,index.html ### https://de.wikipedia.org/wiki/index.html ### [de index.html 1325 16171364, de index.html 2680 30968912, de index.html 2458 27982474, de index.html 2703 30869488, de index.html 2829 32784835, de index.html 2674 30702050, de index.html 2346 26947956, de index.html 2573 29374195, de index.html 2610 30237824, de index.html 2689 32111034, de index.html 2748 31632152, de index.html 2659 30566670, de index.html 2657 30411903, de index.html 2765 32298328, de index.html 2982 34626678, de index.html 2953 33925805, de index.html 2543 29180781, de index.html 2722 31230645, de index.html 2810 32517269, de index.html 2307 26760806, de index.html 2847 33270784, de index.html 2776 32310052, de index.html 2544 29206518, de index.html 2704 31382398])

至此,对维基百科网站统计数据的处理实战就完成了,希望此实战能够给您的大数据分析提供一些参考;