第一个spark应用开发详解(java版)
欢迎访问我的GitHub
https://github.com/zq2599/blog_demos
内容:原创文章分类汇总及配套源码,涉及Java、Docker、K8S、Devops等
WordCount是大数据学习最好的入门demo,今天就一起开发java版本的WordCount,然后提交到Spark2.3.2环境运行;
版本信息
-
操作系统:CentOS7; -
JDK:1.8.0_191; -
Spark:2.3.3; -
Scala:2.11.12; -
Hadoop:2.7.7; -
Maven:3.5.0;
关于spark环境
本次实战用到了spark2.3.3,关于spark集群的部署,请参考《》,请注意,由于2.3.3版本的spark-core的jar包不支持scala2.12,所以在部署spark的时候,scala版本请使用2.11;
关于本次实战开发的应用
本次实战开发的应用是经典的WorkCount,也就是指定一个文本文件,统计其中每个单词出现的次数,再取出现次数最多的10个,打印出来,并保存在hdfs文件中;
本次统计单词数用到的文本
-
本次用到的txt文件,是我在网上找到的pdf版本的《乱世佳人》英文版,然后导出为txt,读者您可以自行选择适合的txt文件来测试; -
在hdfs服务所在的机器上执行以下命令,创建input文件夹:
~/hadoop-2.7.7/bin/hdfs dfs -mkdir /input
-
在hdfs服务所在的机器上执行以下命令,创建output文件夹:
~/hadoop-2.7.7/bin/hdfs dfs -mkdir /output
-
把本次用到的text文件上传到hdfs服务所在的机器,再执行以下命令将文本文件上传到hdfs的/input文件夹下:
~/hadoop-2.7.7/bin/hdfs dfs -put ~/GoneWiththeWind.txt /input
源码下载
| 名称 | 链接 | 备注 |
|---|---|---|
| 项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
| git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
| git仓库地址(ssh) | [email protected]:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
这个git项目中有多个文件夹,本章源码在sparkwordcount这个文件夹下,如下图红框所示:
开发应用
-
基于maven创建一个java应用sparkwordcount,pom.xml的内容如下:
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.bolingcavalry</groupId><artifactId>sparkwordcount</artifactId><version>1.0-SNAPSHOT</version><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.11</artifactId><version>2.3.2</version></dependency></dependencies><build><sourceDirectory>src/main/java</sourceDirectory><testSourceDirectory>src/test/java</testSourceDirectory><plugins><plugin><artifactId>maven-assembly-plugin</artifactId><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs><archive><manifest><mainClass></mainClass></manifest></archive></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin><plugin><groupId>org.codehaus.mojo</groupId><artifactId>exec-maven-plugin</artifactId><version>1.2.1</version><executions><execution><goals><goal>exec</goal></goals></execution></executions><configuration><executable>java</executable><includeProjectDependencies>false</includeProjectDependencies><includePluginDependencies>false</includePluginDependencies><classpathScope>compile</classpathScope><mainClass>com.bolingcavalry.sparkwordcount.WordCount</mainClass></configuration></plugin><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>1.8</source><target>1.8</target></configuration></plugin></plugins></build></project>
-
创建WrodCount类,关键代码位置都有注释,就不再赘述了:
package com.bolingcavalry.sparkwordcount;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import scala.Tuple2;import java.text.SimpleDateFormat;import java.util.Arrays;import java.util.Date;import java.util.List;/*** @Description: spark的WordCount实战* @author: willzhao E-mail: [email protected]* @date: 2019/2/8 17:21*/public class WordCount {public static void main(String[] args) {String hdfsHost = args[0];String hdfsPort = args[1];String textFileName = args[2];SparkConf sparkConf = new SparkConf().setAppName("Spark WordCount Application (java)");JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);String hdfsBasePath = "hdfs://" + hdfsHost + ":" + hdfsPort;//文本文件的hdfs路径String inputPath = hdfsBasePath + "/input/" + textFileName;//输出结果文件的hdfs路径String outputPath = hdfsBasePath + "/output/"+ new SimpleDateFormat("yyyyMMddHHmmss").format(new Date());System.out.println("input path : " + inputPath);System.out.println("output path : " + outputPath);//导入文件JavaRDD<String> textFile = javaSparkContext.textFile(inputPath);JavaPairRDD<String, Integer> counts = textFile//每一行都分割成单词,返回后组成一个大集合.flatMap(s -> Arrays.asList(s.split(" ")).iterator())//key是单词,value是1.mapToPair(word -> new Tuple2<>(word, 1))//基于key进行reduce,逻辑是将value累加.reduceByKey((a, b) -> a + b);//先将key和value倒过来,再按照key排序JavaPairRDD<Integer, String> sorts = counts//key和value颠倒,生成新的map.mapToPair(tuple2 -> new Tuple2<>(tuple2._2(), tuple2._1()))//按照key倒排序.sortByKey(false);//取前10个List<Tuple2<Integer, String>> top10 = sorts.take(10);//打印出来for(Tuple2<Integer, String> tuple2 : top10){System.out.println(tuple2._2() + "\t" + tuple2._1());}//分区合并成一个,再导出为一个txt保存在hdfsjavaSparkContext.parallelize(top10).coalesce(1).saveAsTextFile(outputPath);//关闭contextjavaSparkContext.close();}}
-
在pom.xml目录下执行以下命令,编译构建jar包:
mvn clean package -Dmaven.test.skip=true
-
构建成功后,在target目录下生成文件 sparkwordcount-1.0-SNAPSHOT.jar,上传到spark服务器的 ~/jars/目录下; -
假设spark服务器的IP地址为 192.168.119.163,在spark服务器执行以下命令即可提交任务:
~/spark-2.3.2-bin-hadoop2.7/bin/spark-submit \--master spark://192.168.119.163:7077 \--class com.bolingcavalry.sparkwordcount.WordCount \--executor-memory 512m \--total-executor-cores 2 \~/jars/sparkwordcount-1.0-SNAPSHOT.jar \192.168.119.163 \8020 \GoneWiththeWind.txt
上述命令的最后三个参数,是java的main方法的入参,具体的使用请参照WordCount类的源码;6. 提交成功后立即开始执行任务,看到类似如下信息表示任务完成:
2019-02-08 21:26:04 INFO BlockManagerMaster:54 - BlockManagerMaster stopped2019-02-08 21:26:04 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint:54 - OutputCommitCoordinator stopped!2019-02-08 21:26:04 INFO SparkContext:54 - Successfully stopped SparkContext2019-02-08 21:26:04 INFO ShutdownHookManager:54 - Shutdown hook called2019-02-08 21:26:04 INFO ShutdownHookManager:54 - Deleting directory /tmp/spark-c3e2ea9e-7daf-4cab-a207-26f0a03940172019-02-08 21:26:04 INFO ShutdownHookManager:54 - Deleting directory /tmp/spark-d60e4d75-4189-4f33-a5e2-fbe9b06bdae7
-
往前翻滚一下控制台输出的信息,如下所示,可以见到单词统计的前十名已经输出在控制台了:
2019-02-08 21:36:15 INFO DAGScheduler:54 - Job 1 finished: take at WordCount.java:61, took 0.313008 sthe 18264and 14150to 10020of 8615a 7571her 7086she 6217was 5912in 5751had 45022019-02-08 21:36:15 INFO deprecation:1173 - mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir2019-02-08 21:36:15 INFO FileOutputCommitter:108 - File Output Committer Algorithm version is 1
-
在hdfs服务器执行查看文件的命令,可见/output下新建了子目录20190208213610:
[hadoop@node0 ~]$ ~/hadoop-2.7.7/bin/hdfs dfs -ls /outputFound 1 itemsdrwxr-xr-x - hadoop supergroup 0 2019-02-08 21:36 /output/20190208213610
-
查看子目录,发现里面有两个文件:
[hadoop@node0 ~]$ ~/hadoop-2.7.7/bin/hdfs dfs -ls /output/20190208213610Found 2 items-rw-r--r-- 3 hadoop supergroup 0 2019-02-08 21:36 /output/20190208213610/_SUCCESS-rw-r--r-- 3 hadoop supergroup 108 2019-02-08 21:36 /output/20190208213610/part-00000
-
上面看到的 /output/20190208213610/part-00000就是输出结果,用cat命令查看其内容:
[hadoop@node0 ~]$ ~/hadoop-2.7.7/bin/hdfs dfs -cat /output/20190208213610/part-00000(18264,the)(14150,and)(10020,to)(8615,of)(7571,a)(7086,her)(6217,she)(5912,was)(5751,in)(4502,had)
可见与前面控制台输出的一致;
11. 在spark的web页面,可见刚刚执行的任务信息:
至此,第一个spark应用的开发和运行就完成了,接下来的文章中,咱们一起来完成更多的spark实战;
