vlambda博客
学习文章列表

MySQL如何分库分表和平滑扩容?

来源:https://kefeng.wang/2018/07/22/mysql-sharding/


众所周知,数据库很容易成为应用系统的瓶颈。单机 数据库 的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。本文总结了分库分表的相关概念、全局ID的生成策略、分片策略、平滑扩容方案、以及流行的方案。


1 分库分表概述

在业务量不大时,单库单表即可支撑。

当数据量过大存储不下、或者并发量过大负荷不起时,就要考虑分库分表。

1.1 分库分表相关术语

  • 读写分离: 不同的数据库,同步相同的数据,分别只负责数据的读和写;

  • 分区: 指定分区列表达式,把记录拆分到不同的区域中(必须是同一服务器,可以是不同硬盘),应用看来还是同一张表,没有变化;

  • 分库:一个系统的多张数据表,存储到多个数据库实例中;

  • 分表: 对于一张多行(记录)多列(字段)的二维数据表,又分两种情形:
    (1) 垂直分表: 竖向切分,不同分表存储不同的字段,可以把不常用或者大容量、或者不同业务的字段拆分出去;
    (2) 水平分表(最复杂): 横向切分,按照特定分片算法,不同分表存储不同的记录。

1.2 真的要采用分库分表?

需要注意的是,分库分表会为数据库维护和业务逻辑带来一系列复杂性和性能损耗, 除非预估的业务量大到万不得已,切莫过度设计、过早优化 。

规划期内的数据量和性能问题,尝试能否用下列方式解决:

  • 当前数据量:如果没有达到几百万,通常无需分库分表;

  • 数据量问题:增加磁盘、增加分库(不同的业务功能表,整表拆分至不同的数据库);

  • 性能问题:升级CPU/内存、读写分离、优化数据库系统配置、优化数据表/索引、优化 SQL、分区、数据表的垂直切分;

  • 如果仍未能奏效,才考虑最复杂的方案:数据表的水平切分。



2 全局ID生成策略

2.1 自动增长列

优点:数据库自带功能,有序,性能佳。

缺点:单库单表无妨,分库分表时如果没有规划,ID可能重复。解决方案:

2.1.1 设置自增偏移和步长

## 假设总共有 10 个分表## 级别可选: SESSION(会话级), GLOBAL(全局)
SET
@@SESSION.auto_increment_offset =1;## 起始值, 分别取值为 1~10
SET
@@SESSION.auto_increment_increment =10;## 步长增量

如果采用该方案,在扩容时需要迁移已有数据至新的所属分片。

2.1.2 全局ID映射表

在全局 Redis 中为每张数据表创建一个 ID 的键,记录该表当前最大 ID;

每次申请 ID 时,都自增 1 并返回给应用;

Redis 要定期持久至全局数据库。

2.2 UUID(128位)

在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的。通常平台会提供生成UUID的API。

UUID 由4个连字号(-)将32个字节长的字符串分隔后生成的字符串,总共36个字节长。形如:550e8400-e29b-41d4-a716-446655440000。

UUID 是个标准,其实现有几种,最常用的是微软的 GUID(Globals Unique Identifiers)。

优点:简单,全球唯一;

缺点:存储和传输空间大,无序,性能欠佳。

2.3 COMB(组合)

参考资料:The Cost of GUIDs as Primary Keys

组合 GUID(10字节) 和时间(6字节),达到有序的效果,提高索引性能。

2.4 Snowflake(雪花) 算法

参考资料:twitter/snowflake , Snowflake 算法详解

Snowflake 是 Twitter 开源的分布式 ID 生成算法,其结果为 long(64bit) 的数值。

其特性是各节点无需协调、按时间大致有序、且整个集群各节点单不重复。

该数值的默认组成如下(符号位之外的三部分允许个性化调整):

  • 1bit: 符号位,总是 0(为了保证数值是正数)。

  • 41bit: 毫秒数(可用 69 年);

  • 10bit: 节点ID(5bit数据中心 + 5bit节点ID,支持 32 * 32 = 1024 个节点)

  • 12bit: 流水号(每个节点每毫秒内支持 4096 个 ID,相当于 409万的 QPS,相同时间内如 ID 遇翻转,则等待至下一毫秒)



3 分片策略

3.1 连续分片

根据特定字段(比如用户ID、订单时间)的范围,值在该区间的,划分到特定节点。

优点:集群扩容后,指定新的范围落在新节点即可,无需进行数据迁移。

缺点:如果按时间划分,数据热点分布不均(历史数冷当前数据热),导致节点负荷不均。

3.3 ID取模分片

缺点:扩容后需要迁移数据。

3.2 一致性Hash算法

优点:扩容后无需迁移数据。

3.4 Snowflake 分片

优点:扩容后无需迁移数据。



4 分库分表引入的问题

4.1 分布式事务

参见分布式事务的解决方案

由于两阶段/三阶段提交对性能损耗大,可改用事务补偿机制。

4.2 跨节点 JOIN

对于单库 JOIN,MySQL 原生就支持;

对于多库,出于性能考虑,不建议使用 MySQL 自带的 JOIN,可以用以下方案避免跨节点 JOIN:

  • 全局表: 一些稳定的共用数据表,在各个数据库中都保存一份;

  • 字段冗余: 一些常用的共用字段,在各个数据表中都保存一份;

  • 应用组装:应用获取数据后再组装。

另外,某个 ID 的用户信息在哪个节点,他的关联数据(比如订单)也在哪个节点,可以避免分布式查询。

4.3 跨节点聚合

只能在应用程序端完成。

但对于分页查询,每次大量聚合后再分页,性能欠佳。

4.4 节点扩容

节点扩容后,新的分片规则导致数据所属分片有变,因而需要迁移数据。


5 节点扩容方案

相关资料: 数据库秒级平滑扩容架构方案

5.1 常规方案

如果增加的节点数和扩容操作没有规划,那么绝大部分数据所属的分片都有变化,需要在分片间迁移:

  • 预估迁移耗时,发布停服公告;

  • 停服(用户无法使用服务),使用事先准备的迁移脚本,进行数据迁移;

  • 修改为新的分片规则;

  • 启动服务器。

5.2 免迁移扩容

采用双倍扩容策略,避免数据迁移。扩容前每个节点的数据,有一半要迁移至一个新增节点中,对应关系比较简单。

具体操作如下(假设已有 2 个节点 A/B,要双倍扩容至 A/A2/B/B2 这 4 个节点):

  • 无需停止应用服务器;

  • 新增两个数据库 A2/B2 作为从库,设置主从同步关系为:A=>A2、B=>B2,直至主从数据同步完毕(早期数据可手工同步);

  • 调整分片规则并使之生效:
    原 ID%2=0 => A 改为 ID%4=0 => A, ID%4=2 => A2 ;
    原 ID%2=1 => B 改为 ID%4=1 => B, ID%4=3 => B2 。

  • 解除数据库实例的主从同步关系,并使之生效;

  • 此时,四个节点的数据都已完整,只是有冗余(多存了和自己配对的节点的那部分数据),择机清除即可(过后随时进行,不影响业务)。


6 分库分表方案

6.1 代理层方式

部署一台代理 服务器 伪装成 MySQL 服务器,代理服务器负责与真实 MySQL 节点的对接,应用程序只和代理服务器对接。对应用程序是透明的。

比如 MyCAT, 官网 , 源码 ,参考文档:MyCAT+MySQL 读写分离部署

MyCAT 后端可以支持 MySQL, SQL Server, Oracle, DB2, PostgreSQL等主流数据库,也支持 MongoDB 这种新型NoSQL方式的存储,未来还会支持更多类型的存储。

MyCAT 不仅仅可以用作读写分离,以及分表分库、容灾管理,而且可以用于多租户应用开发、云平台基础设施,让你的架构具备很强的适应性和灵活性。

6.2 应用层方式

处于业务层和 JDBC 层中间,是以 JAR 包方式提供给应用调用,对代码有侵入性。主要方案有:

(1)淘宝网的 TDDL : 已于 2012 年关闭了维护通道,建议不要使用。

(2)当当网的 Sharding-JDBC : 仍在活跃维护中:

是当当应用框架 ddframe 中,从关系型数据库模块 dd-rdb 中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问,实现了 Snowflake 分片算法;

Sharding-JDBC定位为轻量 Java 框架,使用客户端直连数据库,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式。