374,二叉树的最小深度
What they don’t get is that when someone’s struggling, it means he’s strong. 
他们不懂,当一个人在挣扎,那意味着他很强大。
题目描述
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7 
   返回它的最小深度 2。
问题分析:
这题其实不难,看到这道题我们首先想到的是BFS,就是一层一层的遍历,如果某一层的某个节点没有子节点了,我们就返回这个节点的层数即可。
比如上面的9在第二层,他没有子节点了,我们直接返回他所在的层数2即可,没必要在遍历第3层了。代码很简单,我们来看下。
 1public int minDepth(TreeNode root) {
 2    if (root == null)
 3        return 0;
 4    Queue<TreeNode> queue = new LinkedList<>();
 5    queue.add(root);//入队
 6    int level = 0;
 7    while (!queue.isEmpty()) {//队列不为空就继续循环
 8        level++;
 9        int levelCount = queue.size();
10        for (int j = 0; j < levelCount; j++) {
11            TreeNode node = queue.poll();//出队
12            //如果当前node节点的左右子树都为空,直接返回level即可
13            if (node.left == null && node.right == null)
14                return level;
15            if (node.left != null)
16                queue.add(node.left);
17            if (node.right != null)
18                queue.add(node.right);
19        }
20    }
21    return -1;
22}
我们还可以使用递归的方式,返回Math.min(左子树的深度,右子树的深度)+1,看起来很有道理,但有一个问题,如果左右子树都不为空或者都为空是没问题的。但如果左右子树一个为空一个不为空,就会有问题了,因为为空的那个子节点的深度是0,我们不能用它,所以这里要有个判断。
比如下面7的左子树的深度是0,但他还有右子树,所以我们不能选择深度最小的(因为这时7的左子树的深度是0)。
 1public int minDepth(TreeNode root) {
 2    if (root == null)
 3        return 0;
 4    //左子树的最小深度
 5    int left = minDepth(root.left);
 6    //右子树的最小深度
 7    int right = minDepth(root.right);
 8    //如果left和right都为0,我们返回1即可,
 9    //如果left和right只有一个为0,说明他只有一个子结点,我们只需要返回它另一个子节点的最小深度+1即可。
10    //如果left和right都不为0,说明他有两个子节点,我们只需要返回最小深度的+1即可。
11    return (left == 0 || right == 0) ? left + right + 1 : Math.min(left, right) + 1;
12}
或者我们还可以换种方式
 1public static int minDepth(TreeNode root) {
 2    if (root == null)
 3        return 0;
 4    //如果左子树等于空,我们返回右子树的最小高度+1
 5    if (root.left == null)
 6        return minDepth(root.right) + 1;
 7    //如果右子树等于空,我们返回左子树的最小高度+1
 8    if (root.right == null)
 9        return minDepth(root.left) + 1;
10    //如果左右子树都不为空,我们返回左右子树深度最小的那个+1
11    return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
12}
●
●
●
长按上图,识别图中二维码之后即可关注。
如果喜欢这篇文章就点个"在看"吧
