vue2源码揭秘之前期准备
思维导图
Vue2源码目录结构
├── benchmarks 性能、基准测试
├── dist 构建打包的输出目录
├── examples 案例目录
├── flow flow 语法的类型声明
├── packages 一些额外的包,比如:负责服务端渲染的包 vue-server-renderer、配合 vue-loader 使用的的 vue-template-compiler,还有 weex 相关的
│ ├── vue-server-renderer
│ ├── vue-template-compiler
│ ├── weex-template-compiler
│ └── weex-vue-framework
├── scripts 所有的配置文件的存放位置,比如 rollup 的配置文件
├── src vue 源码目录
│ ├── compiler 编译器
│ ├── core 运行时的核心包
│ │ ├── components 全局组件,比如 keep-alive
│ │ ├── config.js 一些默认配置项
│ │ ├── global-api 全局 API,比如熟悉的:Vue.use()、Vue.component() 等
│ │ ├── instance Vue 实例相关的,比如 Vue 构造函数就在这个目录下
│ │ ├── observer 响应式原理
│ │ ├── util 工具方法
│ │ └── vdom 虚拟 DOM 相关,比如熟悉的 patch 算法就在这儿
│ ├── platforms 平台相关的编译器代码
│ │ ├── web
│ │ └── weex
│ ├── server 服务端渲染相关
├── test 测试目录
├── types TS 类型声明
Flow
Flow 是 facebook 出品的 JavaScript 静态类型检查工具。Vue.js 的源码利用了 Flow 做了静态类型检查,所以了解 Flow 有助于我们阅读源码。
为什么用Flow
JavaScript 是动态类型语言,它的灵活性有目共睹,但是过于灵活的副作用是很容易就写出非常隐蔽的隐患代码,在编译期甚至看上去都不会报错,但在运行阶段就可能出现各种奇怪的 bug。
所以使用类型检查可以在编译期尽早发现(由类型错误引起的)bug,不需要在运行时动态检查类型。
Flow的工作方式
通常类型检查分成 2 种方式:
类型推断:通过变量的使用上下文来推断出变量类型,然后根据这些推断来检查类型。
/*@flow*/
function split(str) {
return str.split(' ')
}
split(11)
Flow 检查上述代码后会报错,因为函数 split 期待的参数是字符串,而我们输入了数字。
类型注释:事先注释好我们期待的类型,Flow 会基于这些注释来判断。
*@flow*/
function add(x: number, y: number): number {
return x + y
}
add('Hello', 11)
Flow 就能检查出错误,因为函数参数的期待类型为数字,而我们提供了字符串。
Flow在vue.js源码中的应用
在 Vue.js 的主目录下有 .flowconfig 文件, 它是 Flow 的配置文件。【官方文档】https://flow.org/en/docs/config/
[ignore]
.*/node_modules/.*
.*/test/.*
.*/scripts/.*
.*/examples/.*
.*/benchmarks/.*
[include]
[libs]
flow
[options]
unsafe.enable_getters_and_setters=true
module.name_mapper='^compiler/\(.*\)$' -> '<PROJECT_ROOT>/src/compiler/\1'
module.name_mapper='^core/\(.*\)$' -> '<PROJECT_ROOT>/src/core/\1'
module.name_mapper='^shared/\(.*\)$' -> '<PROJECT_ROOT>/src/shared/\1'
module.name_mapper='^web/\(.*\)$' -> '<PROJECT_ROOT>/src/platforms/web/\1'
module.name_mapper='^weex/\(.*\)$' -> '<PROJECT_ROOT>/src/platforms/weex/\1'
module.name_mapper='^server/\(.*\)$' -> '<PROJECT_ROOT>/src/server/\1'
module.name_mapper='^entries/\(.*\)$' -> '<PROJECT_ROOT>/src/entries/\1'
module.name_mapper='^sfc/\(.*\)$' -> '<PROJECT_ROOT>/src/sfc/\1'
suppress_comment= \\(.\\|\n\\)*\\$flow-disable-line
这里 [libs] 配置的是 flow,表示指定的库定义都在 flow 文件夹内。我们打开这个目录,会发现文件如下:
flow
├── compiler.js # 编译相关
├── component.js # 组件数据结构
├── global-api.js # Global API 结构
├── modules.js # 第三方库定义
├── options.js # 选项相关
├── ssr.js # 服务端渲染相关
├── vnode.js # 虚拟 node 相关
可以看到,Vue.js 有很多自定义类型的定义,在阅读源码的时候,如果遇到某个类型并想了解它完整的数据结构的时候,可以回来翻阅这些数据结构的定义。
vue.js源码目录设计
Vue.js 的源码都在 src 目录下,其目录结构如下。
src
├── compiler # 编译相关
├── core # 核心代码
├── platforms # 不同平台的支持
├── server # 服务端渲染
├── sfc # .vue 文件解析
├── shared # 共享代码
compiler
compiler 目录包含 Vue.js 所有编译相关的代码。它包括把模板解析成 ast 语法树,ast 语法树优化,代码生成等功能。编译是一项耗性能的工作,所以选择借助webpack、vue-loader等辅助插件在构建时编译。
core
core 目录包含了 Vue.js 的核心代码:
内置组件(components)
全局 API 封装(global-api)
Vue实例(instance)
观察者(observer)
虚拟DOM(vdom)
工具函数(util)
platforms
Vue.js 是一个跨平台的 MVVM 框架,它可以跑在 web 上,也可以配合 weex 跑在 native 客户端上。platform 是 Vue.js 的入口,2 个目录代表 2 个主要入口,分别打包成运行在 web 上和 weex 上的 Vue.js。
server
Vue.js 2.0 支持了服务端渲染,所有服务端渲染(Nuxt.js)相关的逻辑都在这个目录下。注意:这部分代码是跑在服务端的 Node.js,不要和跑在浏览器端的 Vue.js 混为一谈。
服务端渲染主要的工作是把组件渲染为服务器端的 HTML 字符串,将它们直接发送到浏览器,最后将静态标记"混合"为客户端上完全交互的应用程序。
sfc
通常我们开发 Vue.js 都会借助 webpack 构建, 然后通过 .vue 单文件来编写组件。
这个目录下的代码逻辑会把 .vue 文件内容解析成一个 JavaScript 的对象。
shared
Vue.js 会定义一些工具方法,这里定义的工具方法都是会被浏览器端的 Vue.js 和服务端的 Vue.js 所共享的。
vue.js源码构建
Vue.js 源码是基于 Rollup 构建的,它的构建相关配置都在 scripts 目录下。
构建脚本
通常一个基于 NPM 托管的项目都会有一个 package.json 文件,它是对项目的描述文件,它的内容实际上是一个标准的 JSON 对象。
我们通常会配置 script 字段作为 NPM 的执行脚本,Vue.js 源码构建的脚本如下:
{
"script": {
"build": "node scripts/build.js",
"build:ssr": "npm run build -- web-runtime-cjs,web-server-renderer",
"build:weex": "npm run build -- weex"
}
}
构建过程
打开构建的入口 JS 文件,在 scripts/build.js 中
let builds = require('./config').getAllBuilds() // 从配置文件读取配置
// 通过命令行参数对构建配置做过滤
if (process.argv[2]) {
const filters = process.argv[2].split(',')
builds = builds.filter(b => {
return filters.some(f => b.output.file.indexOf(f) > -1 || b._name.indexOf(f) > -1)
})
} else {
//默认过滤掉 weex 构建
builds = builds.filter(b => {
return b.output.file.indexOf('weex') === -1
})
}
build(builds)
在配置文件 scripts/config.js 中:
const builds = {
//只有运行时(CommonJS)。被捆绑器使用,例如Webpack和Browserify
'web-runtime-cjs': {
entry: resolve('web/entry-runtime.js'),
dest: resolve('dist/vue.runtime.common.js'),
format: 'cjs',
banner
},
// 运行编译时 CommonJS 构建
'web-full-cjs': {
entry: resolve('web/entry-runtime-with-compiler.js'),
dest: resolve('dist/vue.common.js'),
format: 'cjs',
alias: { he: './entity-decoder' },
banner
},
//仅运行时(ES 模块)。由支持 ES 模块的捆绑程序使用
// e.g. Rollup & Webpack 2
'web-runtime-esm': {
entry: resolve('web/entry-runtime.js'),
dest: resolve('dist/vue.runtime.esm.js'),
format: 'es',
banner
},
//编译运行时由CommonJS构建(ES Modules)
'web-full-esm': {
entry: resolve('web/entry-runtime-with-compiler.js'),
dest: resolve('dist/vue.esm.js'),
format: 'es',
alias: { he: './entity-decoder' },
banner
},
// 仅运行时构建 (Browser)
'web-runtime-dev': {
entry: resolve('web/entry-runtime.js'),
dest: resolve('dist/vue.runtime.js'),
format: 'umd',
env: 'development',
banner
},
// 生产环境运行时构建(Browser)
'web-runtime-prod': {
entry: resolve('web/entry-runtime.js'),
dest: resolve('dist/vue.runtime.min.js'),
format: 'umd',
env: 'production',
banner
},
// 开发环境编译运行时构建 (Browser)
'web-full-dev': {
entry: resolve('web/entry-runtime-with-compiler.js'),
dest: resolve('dist/vue.js'),
format: 'umd',
env: 'development',
alias: { he: './entity-decoder' },
banner
},
// 生产环境编译运行时构建 (Browser)
'web-full-prod': {
entry: resolve('web/entry-runtime-with-compiler.js'),
dest: resolve('dist/vue.min.js'),
format: 'umd',
env: 'production',
alias: { he: './entity-decoder' },
banner
},
// ...
}
这里列举的只是一些vue.js构建的配置。
对于单个配置,它是遵循 Rollup 的构建规则的。
format 属性表示构建的格式,cjs 表示构建出来的文件遵循 CommonJS 规范,es 表示构建出来的文件遵循 ES Module 规范。umd 表示构建出来的文件遵循 UMD 规范。【CommonJS规范,ES Module规范,UMD规范其实都属于模块化的发展历程】
以 web-runtime-cjs 配置为例,它的 entry 是 resolve('web/entry-runtime.js'),先来看一下 resolve 函数的定义。
源码目录:scripts/config.js
const aliases = require('./alias')
const resolve = p => {
const base = p.split('/')[0]
if (aliases[base]) {
return path.resolve(aliases[base], p.slice(base.length + 1))
} else {
return path.resolve(__dirname, '../', p)
}
}
先把 resolve 函数传入的参数 p 通过 / 做了分割成数组,然后取数组第一个元素设置为 base。在这个例子中,参数 p 是 web/entry-runtime.js,那么 base 则为 web。base 并不是实际的路径,它的真实路径借助了别名的配置,我们来看一下别名配置的代码,在 scripts/alias 中:
const path = require('path')
module.exports = {
vue: path.resolve(__dirname, '../src/platforms/web/entry-runtime-with-compiler'),
compiler: path.resolve(__dirname, '../src/compiler'),
core: path.resolve(__dirname, '../src/core'),
shared: path.resolve(__dirname, '../src/shared'),
web: path.resolve(__dirname, '../src/platforms/web'),
weex: path.resolve(__dirname, '../src/platforms/weex'),
server: path.resolve(__dirname, '../src/server'),
entries: path.resolve(__dirname, '../src/entries'),
sfc: path.resolve(__dirname, '../src/sfc')
}
这里 web 对应的真实的路径是 path.resolve(__dirname, '../src/platforms/web'),这个路径就找到了 Vue.js 源码的 web 目录。然后 resolve 函数通过 path.resolve(aliases[base], p.slice(base.length + 1)) 找到了最终路径,它就是 Vue.js 源码 web 目录下的 entry-runtime.js。因此,web-runtime-cjs 配置对应的入口文件就找到了。
它经过 Rollup 的构建打包后,最终会在 dist 目录下生成 vue.runtime.common.js。
Runtime Only Vs Runtime + Compiler
利用 vue-cli 去初始化我们的 Vue.js 项目的时候会询问我们用 Runtime Only 版本的还是 Runtime + Compiler 版本。
Runtime Only
该版本需要借助如 webpack 的 vue-loader 工具把 .vue 文件编译成 JavaScript,因为是在编译阶段做的,所以它只包含运行时的 Vue.js 代码,因此代码体积也会更轻量。
Runtime + Complier
// 需要编译器的版本
new Vue({
template: '<div>{{ hi }}</div>'
})
// 不需要编译器
new Vue({
render (h) {
return h('div', this.hi)
}
})
在 Vue.js 2.0 中,最终渲染都是通过 render 函数,如果写 template 属性,则需要编译成 render 函数,那么这个编译过程会发生运行时,所以需要带有编译器的版本。
很显然,这个编译过程对性能会有一定损耗,所以通常我们更推荐使用 Runtime-Only 的 Vue.js。
Vue的入口
在 web 应用下,构建出来的 Vue.js,它的入口是 src/platforms/web/entry-runtime-with-compiler.js。
当我们的代码执行 import Vue from 'vue' 的时候,就是从这个入口执行代码来初始化 Vue。
在这个入口 JS 的上方我们可以找到 Vue 的来源:import Vue from './runtime/index',我们先来看一下这块儿的实现,它定义在 src/platforms/web/runtime/index.js 中:
import Vue from 'core/index'
import config from 'core/config'
import { extend, noop } from 'shared/util'
import { mountComponent } from 'core/instance/lifecycle'
import { devtools, inBrowser, isChrome } from 'core/util/index'
import {
query,
mustUseProp,
isReservedTag,
isReservedAttr,
getTagNamespace,
isUnknownElement
} from 'web/util/index'
import { patch } from './patch'
import platformDirectives from './directives/index'
import platformComponents from './components/index'
// install platform specific utils
Vue.config.mustUseProp = mustUseProp
Vue.config.isReservedTag = isReservedTag
Vue.config.isReservedAttr = isReservedAttr
Vue.config.getTagNamespace = getTagNamespace
Vue.config.isUnknownElement = isUnknownElement
// install platform runtime directives & components
extend(Vue.options.directives, platformDirectives)
extend(Vue.options.components, platformComponents)
// install platform patch function
Vue.prototype.__patch__ = inBrowser ? patch : noop
// public mount method
Vue.prototype.$mount = function (
el?: string | Element,
hydrating?: boolean
): Component {
el = el && inBrowser ? query(el) : undefined
return mountComponent(this, el, hydrating)
}
// ...
export default Vue
这里关键的代码是 import Vue from 'core/index',之后的逻辑都是对 Vue 这个对象做一些扩展,可以先不用看,我们来看一下真正初始化 Vue 的地方,在 src/core/index.js 中:
import Vue from './instance/index'
import { initGlobalAPI } from './global-api/index'
import { isServerRendering } from 'core/util/env'
import { FunctionalRenderContext } from 'core/vdom/create-functional-component'
initGlobalAPI(Vue)
Object.defineProperty(Vue.prototype, '$isServer', {
get: isServerRendering
})
Object.defineProperty(Vue.prototype, '$ssrContext', {
get () {
/* istanbul ignore next */
return this.$vnode && this.$vnode.ssrContext
}
})
// expose FunctionalRenderContext for ssr runtime helper installation
Object.defineProperty(Vue, 'FunctionalRenderContext', {
value: FunctionalRenderContext
})
Vue.version = '__VERSION__'
export default Vue
这里有 2 处关键的代码,import Vue from './instance/index' 和 initGlobalAPI(Vue),初始化全局 Vue API(我们稍后介绍),我们先来看第一部分,在 src/core/instance/index.js 中:
vue定义
import { initMixin } from './init'
import { stateMixin } from './state'
import { renderMixin } from './render'
import { eventsMixin } from './events'
import { lifecycleMixin } from './lifecycle'
import { warn } from '../util/index'
function Vue (options) {
if (process.env.NODE_ENV !== 'production' &&
!(this instanceof Vue)
) {
warn('Vue is a constructor and should be called with the `new` keyword')
}
this._init(options)
}
initMixin(Vue)
stateMixin(Vue)
eventsMixin(Vue)
lifecycleMixin(Vue)
renderMixin(Vue)
export default Vue
在这里,我们终于看到了 Vue 的庐山真面目,它实际上就是一个用 Function 实现的类,我们只能通过 new Vue 去实例化它。
有些同学看到这不禁想问,为何 Vue 不用 ES6 的 Class 去实现呢?我们往后看这里有很多 xxxMixin 的函数调用,并把 Vue 当参数传入,它们的功能都是给 Vue 的 prototype 上扩展一些方法(这里具体的细节会在之后的文章介绍,这里不展开),Vue 按功能把这些扩展分散到多个模块中去实现,而不是在一个模块里实现所有,这种方式是用 Class 难以实现的。这么做的好处是非常方便代码的维护和管理,这种编程技巧也非常值得我们去学习。
initGlobalAPI
Vue.js 在整个初始化过程中,除了给它的原型 prototype 上扩展方法,还会给 Vue 这个对象本身扩展全局的静态方法,它的定义在 src/core/global-api/index.js 中:
export function initGlobalAPI (Vue: GlobalAPI) {
// config
const configDef = {}
configDef.get = () => config
if (process.env.NODE_ENV !== 'production') {
configDef.set = () => {
warn(
'Do not replace the Vue.config object, set individual fields instead.'
)
}
}
Object.defineProperty(Vue, 'config', configDef)
// exposed util methods.
// NOTE: these are not considered part of the public API - avoid relying on
// them unless you are aware of the risk.
Vue.util = {
warn,
extend,
mergeOptions,
defineReactive
}
Vue.set = set
Vue.delete = del
Vue.nextTick = nextTick
Vue.options = Object.create(null)
ASSET_TYPES.forEach(type => {
Vue.options[type + 's'] = Object.create(null)
})
// this is used to identify the "base" constructor to extend all plain-object
// components with in Weex's multi-instance scenarios.
Vue.options._base = Vue
extend(Vue.options.components, builtInComponents)
initUse(Vue)
initMixin(Vue)
initExtend(Vue)
initAssetRegisters(Vue)
}
这里就是在 Vue 上扩展的一些全局方法的定义,Vue 官网中关于全局 API 都可以在这里找到,这里不会介绍细节,会在之后的章节我们具体介绍到某个 API 的时候会详细介绍。有一点要注意的是,Vue.util 暴露的方法最好不要依赖,因为它可能经常会发生变化,是不稳定
总结