vlambda博客
学习文章列表

二分查找:如何快速定位IP对应的省份地址?



[202.102.133.0, 202.102.133.255]  山东东营市

[202.102.135.0, 202.102.136.255]  山东烟台

[202.102.156.34, 202.102.157.255] 山东青岛

[202.102.48.0, 202.102.48.255] 江苏宿迁

[202.102.49.15, 202.102.51.251] 江苏泰州

[202.102.56.0, 202.102.56.255] 江苏连云港

是不是觉得比较难?不要紧,等学完今天的内容,你就会发现这个问题其实很简单。

上一节我讲了二分查找的原理,并且介绍了最简单的一种二分查找的代码实现。今天我们来讲几种二分查找的变形问题。

不知道你有没有听过这样一个说法:“十个二分九个错”。二分查找虽然原理极其简单,但是想要写出没有 Bug 的二分查找并不容易。

唐纳德·克努特(Donald E.Knuth)在《计算机程序设计艺术》的第 3 卷《排序和查找》中说到:“尽管第一个二分查找算法于 1946 年出现,然而第一个完全正确的二分查找算法实现直到 1962 年才出现。”

你可能会说,我们上一节学的二分查找的代码实现并不难写啊。那是因为上一节讲的只是二分查找中最简单的一种情况,在不存在重复元素的有序数组中,查找值等于给定值的元素。最简单的二分查找写起来确实不难,但是,二分查找的变形问题就没那么好写了。

二分查找的变形问题很多,我只选择几个典型的来讲解,其他的你可以借助我今天讲的思路自己来分析。

二分查找:如何快速定位IP对应的省份地址?



需要特别说明一点,为了简化讲解,今天的内容,我都以数据是从小到大排列为前提,如果你要处理的数据是从大到小排列的,解决思路也是一样的。同时,我希望你最好先自己动手试着写一下这 4 个变形问题,然后再看我的讲述,这样你就会对我说的“二分查找比较难写”有更加深的体会了。

变体一:查找第一个值等于给定值的元素

上一节中的二分查找是最简单的一种,即有序数据集合中不存在重复的数据,我们在其中查找值等于某个给定值的数据。如果我们将这个问题稍微修改下,有序数据集合中存在重复的数据,我们希望找到第一个值等于给定值的数据,这样之前的二分查找代码还能继续工作吗?

比如下面这样一个有序数组,其中,a[5],a[6],a[7]的值都等于 8,是重复的数据。我们希望查找第一个等于 8 的数据,也就是下标是 5 的元素。


如果我们用上一节课讲的二分查找的代码实现,首先拿 8 与区间的中间值 a[4]比较,8 比 6 大,于是在下标 5 到 9 之间继续查找。下标 5 和 9 的中间位置是下标 7,a[7]正好等于 8,所以代码就返回了。

尽管 a[7]也等于 8,但它并不是我们想要找的第一个等于 8 的元素,因为第一个值等于 8 的元素是数组下标为 5 的元素。我们上一节讲的二分查找代码就无法处理这种情况了。所以,针对这个变形问题,我们可以稍微改造一下上一节的代码。

100 个人写二分查找就会有 100 种写法。网上有很多关于变形二分查找的实现方法,有很多写得非常简洁,比如下面这个写法。但是,尽管简洁,理解起来却非常烧脑,也很容易写错。


public int bsearch(int[] a, int n, int value) {

 int low = 0;

 int high = n - 1;

 while (low <= high) {

   int mid = low + ((high - low) >> 1);

   if (a[mid] >= value) {

     high = mid - 1;

   } else {

     low = mid + 1;

   }

 }

 if (low < n && a[low]==value) return low;

 elsereturn -1;

}

看完这个实现之后,你是不是觉得很不好理解?如果你只是死记硬背这个写法,我敢保证,过不了几天,你就会全都忘光,再让你写,90% 的可能会写错。所以,我换了一种实现方法,你看看是不是更容易理解呢?


public int bsearch(int[] a, int n, int value) {

 int low = 0;

 int high = n - 1;

 while (low <= high) {

   int mid =  low + ((high - low) >> 1);

   if (a[mid] > value) {

     high = mid - 1;

   } elseif (a[mid] < value) {

     low = mid + 1;

   } else {

     if ((mid == 0) || (a[mid - 1] != value)) return mid;

     else high = mid - 1;

   }

 }

 return -1;

}

我来稍微解释一下这段代码。a[mid]跟要查找的 value 的大小关系有三种情况:大于、小于、等于。对于 a[mid]>value 的情况,我们需要更新 high= mid-1;对于 a[mid]<value 的情况,我们需要更新 low=mid+1。这两点都很好理解。那当 a[mid]=value 的时候应该如何处理呢?

如果我们查找的是任意一个值等于给定值的元素,当 a[mid]等于要查找的值时,a[mid]就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当 a[mid]等于要查找的值时,我们就需要确认一下这个 a[mid]是不是第一个值等于给定值的元素。

我们重点看第 11 行代码。如果 mid 等于 0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果 mid 不等于 0,但 a[mid]的前一个元素 a[mid-1]不等于 value,那也说明 a[mid]就是我们要找的第一个值等于给定值的元素。

如果经过检查之后发现 a[mid]前面的一个元素 a[mid-1]也等于 value,那说明此时的 a[mid]肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新 high=mid-1,因为要找的元素肯定出现在[low, mid-1]之间。

对比上面的两段代码,是不是下面那种更好理解?实际上,很多人都觉得变形的二分查找很难写,主要原因是太追求第一种那样完美、简洁的写法。而对于我们做工程开发的人来说,代码易读懂、没 Bug,其实更重要,所以我觉得第二种写法更好。

变体二:查找最后一个值等于给定值的元素

前面的问题是查找第一个值等于给定值的元素,我现在把问题稍微改一下,查找最后一个值等于给定值的元素,又该如何做呢?

如果你掌握了前面的写法,那这个问题你应该很轻松就能解决。你可以先试着实现一下,然后跟我写的对比一下。


public int bsearch(int[] a, int n, int value) {

 int low = 0;

 int high = n - 1;

 while (low <= high) {

   int mid =  low + ((high - low) >> 1);

   if (a[mid] > value) {

     high = mid - 1;

   } elseif (a[mid] < value) {

     low = mid + 1;

   } else {

     if ((mid == n - 1) || (a[mid + 1] != value)) return mid;

     else low = mid + 1;

   }

 }

 return -1;

}

我们还是重点看第 11 行代码。如果 a[mid]这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果 a[mid]的后一个元素 a[mid+1]不等于 value,那也说明 a[mid]就是我们要找的最后一个值等于给定值的元素。

如果我们经过检查之后,发现 a[mid]后面的一个元素 a[mid+1]也等于 value,那说明当前的这个 a[mid]并不是最后一个值等于给定值的元素。我们就更新 low=mid+1,因为要找的元素肯定出现在[mid+1, high]之间。

变体三:查找第一个大于等于给定值的元素

现在我们再来看另外一类变形问题。在有序数组中,查找第一个大于等于给定值的元素。比如,数组中存储的这样一个序列:3,4,6,7,10。如果查找第一个大于等于 5 的元素,那就是 6。

实际上,实现的思路跟前面的那两种变形问题的实现思路类似,代码写起来甚至更简洁。


public int bsearch(int[] a, int n, int value) {

 int low = 0;

 int high = n - 1;

 while (low <= high) {

   int mid =  low + ((high - low) >> 1);

   if (a[mid] >= value) {

     if ((mid == 0) || (a[mid - 1] < value)) return mid;

     else high = mid - 1;

   } else {

     low = mid + 1;

   }

 }

 return -1;

}

如果 a[mid]小于要查找的值 value,那要查找的值肯定在[mid+1, high]之间,所以,我们更新 low=mid+1。

对于 a[mid]大于等于给定值 value 的情况,我们要先看下这个 a[mid]是不是我们要找的第一个值大于等于给定值的元素。如果 a[mid]前面已经没有元素,或者前面一个元素小于要查找的值 value,那 a[mid]就是我们要找的元素。这段逻辑对应的代码是第 7 行。

如果 a[mid-1]也大于等于要查找的值 value,那说明要查找的元素在[low, mid-1]之间,所以,我们将 high 更新为 mid-1。

变体四:查找最后一个小于等于给定值的元素

现在,我们来看最后一种二分查找的变形问题,查找最后一个小于等于给定值的元素。比如,数组中存储了这样一组数据:3,5,6,8,9,10。最后一个小于等于 7 的元素就是 6。是不是有点类似上面那一种?实际上,实现思路也是一样的。

有了前面的基础,你完全可以自己写出来了,所以我就不详细分析了。我把代码贴出来,你可以写完之后对比一下。


public int bsearch7(int[] a, int n, int value) {

 int low = 0;

 int high = n - 1;

 while (low <= high) {

   int mid =  low + ((high - low) >> 1);

   if (a[mid] > value) {

     high = mid - 1;

   } else {

     if ((mid == n - 1) || (a[mid + 1] > value)) return mid;

     else low = mid + 1;

   }

 }

 return -1;

}

解答开篇

然后,这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。

当我们要查询某个 IP 归属地时,我们可以先通过二分查找,找到最后一个起始 IP 小于等于这个 IP 的 IP 区间,然后,检查这个 IP 是否在这个 IP 区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。

长按下方二维码关注精致的程序员,成为一个技术过硬,外表精致,灵魂有趣程序员