vlambda博客
学习文章列表

TCP在高时延和丢包的网络中传输效率差;tcp协议

tcp协议

为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

TCP在高时延和丢包的网络中传输效率差

在这个数字世界中,数字数据的快速和可靠移动,包括全球范围内的大规模数据传送,对于几乎所有行业的业务成功都变得至关重要。

然而,传统的TCP协议具有固有的性能瓶颈,特别是对于具有高往返时间(RTT)和丢包的高带宽网络上最为显著。

TCP固有的传输性能瓶颈主要是由TCP的加性增/乘性减(AIMD)拥塞避免算法引起的,TCP拥塞算法缓慢地探测网络的可用带宽,增加传输速率直到检测到分组丢失,然后指数地降低传输速率。

TCP的这种拥塞算法是为了避免Internet整体拥塞而设计的,因为在互联网的早期,数据传送网络都是基于电缆固定网络,传输中出现丢包就可以100%的认为是传输通道出现了拥塞。然而在今天的网络情况下,WIFI/移动蜂窝网络等无线传输网络本身就具有天然的丢包可能性,这些与网络拥塞无关的其它分组丢失同样降低了传输速率。

事实上,TCP AIMD算法本身也会造成丢包,导致网络出现瓶颈。在提高传输速率直到发生丢失时,AIMD过于激进地探测可用带宽导致丢包。在某些情况下,这种由于激进探测带宽引发的丢包损耗实际上超过了来自其它原因(例如物理介质或交叉业务突发)的损耗,并且以不可预测的损耗比将"无损耗通信信道"变为"不可靠的信道"。

TCP AIMD中基于丢包的拥塞控制对网络端到端传输吞吐量具有致命的影响:当一个分组丢失需要重传时,TCP大幅降低发送数据甚至停止发送数据到接收应用,直到重传确认。所有的网络应用传输性能都会受到TCP这种拥塞算法的影响,但是对于大批量数据的传输而言,尤其致命。

TCP中可靠性(重传)与拥塞控制的这种耦合对文件传输造成严重的人为吞吐量损失,这从基于TCP的传统文件传输协议(如广域网上的FTP、HTTP、CIFS、NFS )的性能较差可见一斑。

下面条形图显示了在使用TCP (黄色显示)的文件传输技术的OC-1 (51 Mbps)链路上,在各种数据包丢失和网络延迟条件下可实现的最大吞吐量。TCP连接吞吐量有一个严格的理论限制,它仅取决于网络RTT和数据包丢失。请注意,增加更多带宽不会改变TCP有效吞吐量。文件传输速度没有提高,昂贵的带宽也没有得到充分利用。