Netty:server启动流程解析
走过路过不要错过
netty作为一个被广泛应用的通信框架,有必要我们多了解一点。
实际上netty的几个重要的技术亮点:
1. reactor的线程模型;
2. 安全有效的nio非阻塞io模型应用;
3. pipeline流水线式的灵活处理过程;
4. channelHandler的灵活实现;
5. 提供许多开箱即用的处理器和编解码器;
我们可以从这些点去深入理解其过人之处。
1. 一个NettyServer的demo
要想深入理解某个框架,一般还是要以demo作为一个抓手点的。以下,我们可以看到一个简单的nettyServer的创建过程,即netty的quick start样例吧。
@Slf4jpublic class NettyServerHelloApplication {/*** 一个server的样例*/public static void main(String[] args) throws Exception {// 1. 创建对应的EventLoop线程池备用, 分bossGroup和workerGroupEventLoopGroup bossGroup = new NioEventLoopGroup(1);EventLoopGroup workerGroup = new NioEventLoopGroup(4);try {// 2. 创建netty对应的入口核心类 ServerBootstrapServerBootstrap b = new ServerBootstrap();// 3. 设置server的各项参数,以及应用处理器b.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).option(ChannelOption.SO_BACKLOG, 100) // 设置tcp协议的请求等待队列.childHandler(new ChannelInitializer<SocketChannel>() {@Overridepublic void initChannel(SocketChannel ch) throws Exception {// 3.2. 最重要的,将各channelHandler绑定到netty的上下文中(暂且这么说吧)ChannelPipeline p = ch.pipeline();p.addLast(new LoggingHandler(LogLevel.INFO));p.addLast("encoder", new MessageEncoder());p.addLast("decoder", new MessageDecoder());p.addLast(new EchoServerHandler());}});// 4. 绑定tcp端口开启服务端监听, sync() 保证执行完成所有任务ChannelFuture f = b.bind(ServerConstant.PORT).sync();// 5. 等待关闭信号,让业务线程去服务业务了f.channel().closeFuture().sync();} finally {// 6. 收到关闭信号后,优雅关闭server的线程池,保护应用bossGroup.shutdownGracefully();workerGroup.shutdownGracefully();}}}
以上,就是一个简版的nettyServer的整个框架了,这也基本上整个nettyServer的编程范式了。主要即分为这么几步:
1. 创建对应的EventLoop线程池备用, 分bossGroup和workerGroup;
2. 创建netty对应的入口核心类 ServerBootstrap;
3. 设置server的各项参数,以及应用处理器(必备的channelHandler业务接入过程);
4. 绑定tcp端口开启服务端监听;
5. 等待关闭信号,让业务线程去服务业务了;
6. 收到关闭信号后,优雅关闭server的线程池,保护应用;
事实上,如果我们直接基于jdk提供的ServerSocketChannel是否也差不了多少呢?是的,至少表面看起来是的,但我们要处理许多的异常情况,且可能面对变化繁多的业务类型。又该如何呢?
毕竟一个框架的成功,绝非偶然。下面我们就这几个过程来看看netty都是如何处理的吧!
2. EventLoop 的创建
EventLoop 直译为事件循环,但在这里我们也可以理解为一个线程池,因为所有的事件都是提交给其处理的。那么,它倒底是个什么样的循环呢?
首先来看下其类继承情况:
从类图可以看出,EventLoop也是一个executor或者说线程池的实现,它们也许有相通之处。
// 调用方式如下EventLoopGroup bossGroup = new NioEventLoopGroup(1);EventLoopGroup workerGroup = new NioEventLoopGroup(4);// io.netty.channel.nio.NioEventLoopGroup#NioEventLoopGroup(int, java.util.concurrent.ThreadFactory)/*** Create a new instance using the specified number of threads, the given {@link ThreadFactory} and the* {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}.*/public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {this(nThreads, threadFactory, SelectorProvider.provider());}public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider) {this(nThreads, executor, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);}public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,final SelectStrategyFactory selectStrategyFactory) {super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());}// io.netty.channel.MultithreadEventLoopGroup#MultithreadEventLoopGroup(int, java.util.concurrent.Executor, java.lang.Object...)protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {// 默认线程是 cpu * 2super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);}// io.netty.util.concurrent.MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, java.util.concurrent.Executor, java.lang.Object...)/*** Create a new instance.** @param nThreads the number of threads that will be used by this instance.* @param executor the Executor to use, or {@code null} if the default should be used.* @param args arguments which will passed to each {@link #newChild(Executor, Object...)} call*/protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);}// io.netty.util.concurrent.MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, java.util.concurrent.Executor, io.netty.util.concurrent.EventExecutorChooserFactory, java.lang.Object...)/*** Create a new instance.** @param nThreads the number of threads that will be used by this instance.* @param executor the Executor to use, or {@code null} if the default should be used.* @param chooserFactory the {@link EventExecutorChooserFactory} to use.* @param args arguments which will passed to each {@link #newChild(Executor, Object...)} call*/protected MultithreadEventExecutorGroup(int nThreads, Executor executor,EventExecutorChooserFactory chooserFactory, Object... args) {if (nThreads <= 0) {throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));}// 创建一个执行器,该执行器每提交一个任务,就创建一个线程来运行,即并没有队列的概念if (executor == null) {executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());}// 使用一个数组来保存整个可用的线程池children = new EventExecutor[nThreads];for (int i = 0; i < nThreads; i ++) {boolean success = false;try {// 为每个child创建一个线程运行, 该方法由子类实现children[i] = newChild(executor, args);success = true;} catch (Exception e) {// TODO: Think about if this is a good exception typethrow new IllegalStateException("failed to create a child event loop", e);} finally {if (!success) {// 如果创建失败,则把已经创建好的线程池关闭掉// 不过值得注意的是,当某个线程池创建失败后,并没有立即停止后续创建工作,即无 return 操作,这是为啥?// 实际上,发生异常时,Exeception 已经被抛出,此处无需关注for (int j = 0; j < i; j ++) {children[j].shutdownGracefully();}for (int j = 0; j < i; j ++) {EventExecutor e = children[j];try {while (!e.isTerminated()) {e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);}} catch (InterruptedException interrupted) {// Let the caller handle the interruption.Thread.currentThread().interrupt();break;}}}}}// 创建选择器,猜测是做负载均衡时使用// 此处的chooser默认是 DefaultEventExecutorChooserFactorychooser = chooserFactory.newChooser(children);final FutureListener<Object> terminationListener = new FutureListener<Object>() {@Overridepublic void operationComplete(Future<Object> future) throws Exception {if (terminatedChildren.incrementAndGet() == children.length) {terminationFuture.setSuccess(null);}}};for (EventExecutor e: children) {e.terminationFuture().addListener(terminationListener);}Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);Collections.addAll(childrenSet, children);readonlyChildren = Collections.unmodifiableSet(childrenSet);}// io.netty.channel.nio.NioEventLoopGroup#newChild@Overrideprotected EventLoop newChild(Executor executor, Object... args) throws Exception {// 注意此处的参数类型是由外部进行保证的,在此直接做强转操作return new NioEventLoop(this, executor, (SelectorProvider) args[0],((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);}// io.netty.channel.nio.NioEventLoop#NioEventLoopNioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {// 此构造器会做很多事,比如创建队列,开启nio selector...super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);if (selectorProvider == null) {throw new NullPointerException("selectorProvider");}if (strategy == null) {throw new NullPointerException("selectStrategy");}provider = selectorProvider;final SelectorTuple selectorTuple = openSelector();selector = selectorTuple.selector;unwrappedSelector = selectorTuple.unwrappedSelector;selectStrategy = strategy;}// io.netty.util.concurrent.DefaultEventExecutorChooserFactory#newChooser@SuppressWarnings("unchecked")@Overridepublic EventExecutorChooser newChooser(EventExecutor[] executors) {// 如: 1,2,4,8... 都会创建 PowerOfTwoEventExecutorChooserif (isPowerOfTwo(executors.length)) {return new PowerOfTwoEventExecutorChooser(executors);} else {return new GenericEventExecutorChooser(executors);}}// io.netty.util.concurrent.DefaultPromise#addListener@Overridepublic Promise<V> addListener(GenericFutureListener<? extends Future<? super V>> listener) {checkNotNull(listener, "listener");synchronized (this) {addListener0(listener);}if (isDone()) {notifyListeners();}return this;}
以上,就是 NioEventLoopGroup 的创建过程了. 本质上其就是一个个的单独的线程组成的数组列表, 等待被调用.
3. ServerBootstrap 的创建
ServerBootstrap是Netty的一个服务端核心入口类, 它可以很快速的创建一个稳定的netty服务.
ServerBootstrap 的类图如下:
还是非常纯粹的啊!其中有意思是的, ServerBootstrap继承自 AbstractBootstrap, 而这个 AbstractBootstrap 是一个自依赖的抽象类: AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> , 这样,即父类可以直接返回子类的信息了。
其默认构造方法为空,所以所以参数都使用默认值, 因为还有后续的参数设置过程,接下来,我们看看其一些关键参数的设置:
// 1. channel的设定// io.netty.bootstrap.AbstractBootstrap#channel/*** The {@link Class} which is used to create {@link Channel} instances from.* You either use this or {@link #channelFactory(io.netty.channel.ChannelFactory)} if your* {@link Channel} implementation has no no-args constructor.*/public B channel(Class<? extends C> channelClass) {if (channelClass == null) {throw new NullPointerException("channelClass");}// 默认使用构造器反射的方式创建 channelreturn channelFactory(new ReflectiveChannelFactory<C>(channelClass));}// io.netty.bootstrap.AbstractBootstrap#channelFactory(io.netty.channel.ChannelFactory<? extends C>)/*** {@link io.netty.channel.ChannelFactory} which is used to create {@link Channel} instances from* when calling {@link #bind()}. This method is usually only used if {@link #channel(Class)}* is not working for you because of some more complex needs. If your {@link Channel} implementation* has a no-args constructor, its highly recommend to just use {@link #channel(Class)} for* simplify your code.*/@SuppressWarnings({ "unchecked", "deprecation" })public B channelFactory(io.netty.channel.ChannelFactory<? extends C> channelFactory) {return channelFactory((ChannelFactory<C>) channelFactory);}// io.netty.bootstrap.AbstractBootstrap#channelFactory(io.netty.bootstrap.ChannelFactory<? extends C>)/*** @deprecated Use {@link #channelFactory(io.netty.channel.ChannelFactory)} instead.*/@Deprecatedpublic B channelFactory(ChannelFactory<? extends C> channelFactory) {if (channelFactory == null) {throw new NullPointerException("channelFactory");}if (this.channelFactory != null) {throw new IllegalStateException("channelFactory set already");}this.channelFactory = channelFactory;return self();}@SuppressWarnings("unchecked")private B self() {return (B) this;}// 2. option 参数选项设置, 它会承包各种特殊配置的设置, 是一个通用配置项设置的入口/*** Allow to specify a {@link ChannelOption} which is used for the {@link Channel} instances once they got* created. Use a value of {@code null} to remove a previous set {@link ChannelOption}.*/public <T> B option(ChannelOption<T> option, T value) {if (option == null) {throw new NullPointerException("option");}// options 是一个 new LinkedHashMap<ChannelOption<?>, Object>(), 即非线程安全的容器, 所以设置值时要求使用 synchronized 保证线程安全// value 为null时代表要将该选项设置删除, 如果key相同,后面的配置将会覆盖前面的配置if (value == null) {synchronized (options) {options.remove(option);}} else {synchronized (options) {options.put(option, value);}}return self();}// 3. childHandler 添加channelHandler, 这是一个最重要的一个方法, 它会影响到后面的业务处理统筹// 调用该方法仅将 channelHandler的上下文加入进来, 实际还未进行真正的添加操作 .childHandler(new ChannelInitializer<SocketChannel>() {ServerBootstrap b = new ServerBootstrap();b.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).option(ChannelOption.SO_BACKLOG, 100) // 设置tcp协议的请求等待队列.childHandler(new ChannelInitializer<SocketChannel>() {@Overridepublic void initChannel(SocketChannel ch) throws Exception {ChannelPipeline p = ch.pipeline();p.addLast(new LoggingHandler(LogLevel.INFO));p.addLast("encoder", new MessageEncoder());p.addLast("decoder", new MessageDecoder());p.addLast(new EchoServerHandler());}});/*** Set the {@link ChannelHandler} which is used to serve the request for the {@link Channel}'s.*/public ServerBootstrap childHandler(ChannelHandler childHandler) {if (childHandler == null) {throw new NullPointerException("childHandler");}// 仅将 channelHandler 绑定到netty的上下文中this.childHandler = childHandler;return this;}// 4. bossGroup, workGroup 如何被分配 ?/*** Set the {@link EventLoopGroup} for the parent (acceptor) and the child (client). These* {@link EventLoopGroup}'s are used to handle all the events and IO for {@link ServerChannel} and* {@link Channel}'s.*/public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {// parentGroup 是给acceptor使用的, 主要用于对socket连接的接入,所以一般一个线程也够了super.group(parentGroup);if (childGroup == null) {throw new NullPointerException("childGroup");}if (this.childGroup != null) {throw new IllegalStateException("childGroup set already");}// childGroup 主要用于接入后的socket的事件的处理,一般要求数量较多,视业务属性决定this.childGroup = childGroup;return this;}
bind 绑定tcp端口,这个是真正触发server初始化的一步,工作量比较大,我们另开一段讲解。
4. nettyServer 的初始化
前面所有工作都是在准备, 都并未体现在外部, 而 bind 则会是开启一个对外服务, 对外可见, 真正启动server.
// io.netty.bootstrap.AbstractBootstrap#bind(int)/*** Create a new {@link Channel} and bind it.*/public ChannelFuture bind(int inetPort) {return bind(new InetSocketAddress(inetPort));}// io.netty.bootstrap.AbstractBootstrap#bind(java.net.SocketAddress)/*** Create a new {@link Channel} and bind it.*/public ChannelFuture bind(SocketAddress localAddress) {// 先验证各种参数是否设置完整, 如线程池是否设置, channelHandler 是否设置...validate();if (localAddress == null) {throw new NullPointerException("localAddress");}// 绑定tcp端口return doBind(localAddress);}private ChannelFuture doBind(final SocketAddress localAddress) {// 1. 创建一些channel使用, 与eventloop绑定, 统一管理嘛final ChannelFuture regFuture = initAndRegister();final Channel channel = regFuture.channel();if (regFuture.cause() != null) {return regFuture;}if (regFuture.isDone()) {// At this point we know that the registration was complete and successful.ChannelPromise promise = channel.newPromise();// 2. 注册成功之后, 开始实际的 bind() 操作, 实际就是调用 channel.bind()// doBind0() 是一个异步的操作,所以使用的一个 promise 作为结果驱动doBind0(regFuture, channel, localAddress, promise);return promise;} else {// Registration future is almost always fulfilled already, but just in case it's not.final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);regFuture.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {Throwable cause = future.cause();if (cause != null) {// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an// IllegalStateException once we try to access the EventLoop of the Channel.promise.setFailure(cause);} else {// Registration was successful, so set the correct executor to use.// See https://github.com/netty/netty/issues/2586promise.registered();doBind0(regFuture, channel, localAddress, promise);}}});return promise;}}
所以,从整体来说,bind()过程分两大步走:1. 初始化channel,与nio关联; 2. 落实channel和本地端口的绑定工作; 我们来细看下:
4.1 初始化channel
初始化channel, 并注册到 selector上, 这个操作实际上非常重要。
// 以下我们先看下执行框架// io.netty.bootstrap.AbstractBootstrap#initAndRegisterfinal ChannelFuture initAndRegister() {Channel channel = null;try {// 即根据前面设置的channel 使用反射创建一个实例出来// 即此处将会实例化出一个 ServerSocketChannel 出来// 所以如果你想用jdk的nio实现,则设置channel时使用 NioServerSocketChannel.class即可, 而你想使用其他更优化的实现时比如EpollServerSocketChannel时,改变一下即可// 而此处的 channelFactory 就是一个反射的实现 ReflectiveChannelFactory, 它会调用如上channel的无参构造方法实例化// 重点工作就需要在这个无参构造器中完成,我们接下来看看channel = channelFactory.newChannel();// 初始化channel的一些公共参数, 相当于做一些属性的继承, 因为后续它将不再依赖 ServerBootstrap, 它需要有独立自主能力init(channel);} catch (Throwable t) {if (channel != null) {// channel can be null if newChannel crashed (eg SocketException("too many open files"))channel.unsafe().closeForcibly();// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutorreturn new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);}// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutorreturn new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);}// 注册创建好的 channel 到eventLoop中ChannelFuture regFuture = config().group().register(channel);if (regFuture.cause() != null) {if (channel.isRegistered()) {channel.close();} else {channel.unsafe().closeForcibly();}}// If we are here and the promise is not failed, it's one of the following cases:// 1) If we attempted registration from the event loop, the registration has been completed at this point.// i.e. It's safe to attempt bind() or connect() now because the channel has been registered.// 2) If we attempted registration from the other thread, the registration request has been successfully// added to the event loop's task queue for later execution.// i.e. It's safe to attempt bind() or connect() now:// because bind() or connect() will be executed *after* the scheduled registration task is executed// because register(), bind(), and connect() are all bound to the same thread.return regFuture;}// 1. 先看看 NioServerSocketChannel 的构造过程// io.netty.channel.socket.nio.NioServerSocketChannel#NioServerSocketChannel()/*** Create a new instance*/public NioServerSocketChannel() {// newSocket 简单说就是创建一个本地socket, api调用: SelectorProvider.provider().openServerSocketChannel()// 但此时本 socket 并未和任何端口绑定this(newSocket(DEFAULT_SELECTOR_PROVIDER));}/*** Create a new instance using the given {@link ServerSocketChannel}.*/public NioServerSocketChannel(ServerSocketChannel channel) {// 注册 OP_ACCEPT 事件super(null, channel, SelectionKey.OP_ACCEPT);// 此处的 javaChannel() 实际就是 channel, 这样调用只是为统一吧// 创建一个新的 socket 传入 NioServerSocketChannelConfig 中// 主要用于一些 RecvByteBufAllocator 的设置,及channel的保存config = new NioServerSocketChannelConfig(this, javaChannel().socket());}// io.netty.channel.nio.AbstractNioChannel#AbstractNioChannel/*** Create a new instance** @param parent the parent {@link Channel} by which this instance was created. May be {@code null}* @param ch the underlying {@link SelectableChannel} on which it operates* @param readInterestOp the ops to set to receive data from the {@link SelectableChannel}*/protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {// 先让父类初始化必要的上下文super(parent);// 保留 channel 信息,并设置非阻塞标识this.ch = ch;this.readInterestOp = readInterestOp;try {ch.configureBlocking(false);} catch (IOException e) {try {ch.close();} catch (IOException e2) {if (logger.isWarnEnabled()) {logger.warn("Failed to close a partially initialized socket.", e2);}}throw new ChannelException("Failed to enter non-blocking mode.", e);}}// io.netty.channel.AbstractChannel#AbstractChannel(io.netty.channel.Channel)/*** Creates a new instance.** @param parent* the parent of this channel. {@code null} if there's no parent.*/protected AbstractChannel(Channel parent) {// 初始化上下文this.parent = parent;// DefaultChannelIdid = newId();// NioMessageUnsafeunsafe = newUnsafe();// new DefaultChannelPipeline(this);// 比较重要,将会初始化 head, tail 节点pipeline = newChannelPipeline();}// io.netty.channel.DefaultChannelPipeline#DefaultChannelPipelineprotected DefaultChannelPipeline(Channel channel) {this.channel = ObjectUtil.checkNotNull(channel, "channel");succeededFuture = new SucceededChannelFuture(channel, null);voidPromise = new VoidChannelPromise(channel, true);// 初始化 head, tailtail = new TailContext(this);head = new HeadContext(this);// 构成双向链表head.next = tail;tail.prev = head;}// 2. 初始化channel, 有个最重要的动作是将 Acceptor 接入到 pipeline 中// io.netty.bootstrap.ServerBootstrap#init@Overridevoid init(Channel channel) throws Exception {final Map<ChannelOption<?>, Object> options = options0();// 根据前面的设置, 将各种属性copy过来, 放到 config 字段中// 同样, 因为 options 和 attrs 都不是线程安全的, 所以都要上锁操作synchronized (options) {setChannelOptions(channel, options, logger);}final Map<AttributeKey<?>, Object> attrs = attrs0();synchronized (attrs) {for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {@SuppressWarnings("unchecked")AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();channel.attr(key).set(e.getValue());}}// 此处的pipeline, 就是在 NioServerSocketChannel 中初始化好head,tail的pipelineChannelPipeline p = channel.pipeline();// childGroup 实际就是外部的 workGroupfinal EventLoopGroup currentChildGroup = childGroup;final ChannelHandler currentChildHandler = childHandler;final Entry<ChannelOption<?>, Object>[] currentChildOptions;final Entry<AttributeKey<?>, Object>[] currentChildAttrs;synchronized (childOptions) {currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));}synchronized (childAttrs) {currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));}// 这个就比较重要了, 关联 ServerBootstrapAcceptor// 主动添加一个 initializer, 它将作为第一个被调用的 channelInitializer 存在// 而 channelInitializer 只会被调用一次p.addLast(new ChannelInitializer<Channel>() {@Overridepublic void initChannel(final Channel ch) throws Exception {final ChannelPipeline pipeline = ch.pipeline();ChannelHandler handler = config.handler();if (handler != null) {pipeline.addLast(handler);}ch.eventLoop().execute(new Runnable() {@Overridepublic void run() {// 添加 Acceptor 到 pipeline 中, 形成一个 head -> ServerBootstrapAcceptor -> tail 的pipelinepipeline.addLast(new ServerBootstrapAcceptor(ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));}});}});// 此操作过后,当前pipeline中,就只有此一handler}
4.2 handler的添加过程
addLast() 看起来只是一个添加元素的过程, 总体来说就是一个双向链表的添加, 但也蛮有意思的, 有兴趣可以戳开详情看看.
// io.netty.channel.ChannelHandler@Overridepublic final ChannelPipeline addLast(ChannelHandler... handlers) {return addLast(null, handlers);}// io.netty.channel.DefaultChannelPipeline#addLast(io.netty.util.concurrent.EventExecutorGroup, io.netty.channel.ChannelHandler...)@Overridepublic final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {if (handlers == null) {throw new NullPointerException("handlers");}// 支持同时添加多个 handlerfor (ChannelHandler h: handlers) {if (h == null) {break;}addLast(executor, null, h);}return this;}// io.netty.channel.DefaultChannelPipeline#addLast(io.netty.util.concurrent.EventExecutorGroup, java.lang.String, io.netty.channel.ChannelHandler)@Overridepublic final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {final AbstractChannelHandlerContext newCtx;synchronized (this) {// 重复性检查 @Shareable 参数使用checkMultiplicity(handler);// 生成一个新的上下文, filterName()将会生成一个唯一的名称, 如 ServerBootstrap$1#0newCtx = newContext(group, filterName(name, handler), handler);// 将当前ctx添加到链表中addLast0(newCtx);// If the registered is false it means that the channel was not registered on an eventloop yet.// In this case we add the context to the pipeline and add a task that will call// ChannelHandler.handlerAdded(...) once the channel is registered.if (!registered) {newCtx.setAddPending();// 未注册情况下, 不会进行下一步了callHandlerCallbackLater(newCtx, true);return this;}// 而已注册情况下, 则会使用 executor 提交callHandlerAdded0, 即调用 pipeline 的头节点EventExecutor executor = newCtx.executor();if (!executor.inEventLoop()) {newCtx.setAddPending();executor.execute(new Runnable() {@Overridepublic void run() {callHandlerAdded0(newCtx);}});return this;}}callHandlerAdded0(newCtx);return this;}private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler);}private void addLast0(AbstractChannelHandlerContext newCtx) {// 一个双向链表保存上下文AbstractChannelHandlerContext prev = tail.prev;newCtx.prev = prev;newCtx.next = tail;prev.next = newCtx;tail.prev = newCtx;}// 添加ctx到队列尾部private void callHandlerCallbackLater(AbstractChannelHandlerContext ctx, boolean added) {assert !registered;PendingHandlerCallback task = added ? new PendingHandlerAddedTask(ctx) : new PendingHandlerRemovedTask(ctx);PendingHandlerCallback pending = pendingHandlerCallbackHead;if (pending == null) {pendingHandlerCallbackHead = task;} else {// Find the tail of the linked-list.while (pending.next != null) {pending = pending.next;}pending.next = task;}}// 对每一次添加 handler, 则都会产生一个事件, 通知现有的handler, handlerAdded()private void callHandlerAdded0(final AbstractChannelHandlerContext ctx) {try {// We must call setAddComplete before calling handlerAdded. Otherwise if the handlerAdded method generates// any pipeline events ctx.handler() will miss them because the state will not allow it.ctx.setAddComplete();ctx.handler().handlerAdded(ctx);} catch (Throwable t) {boolean removed = false;try {remove0(ctx);try {ctx.handler().handlerRemoved(ctx);} finally {ctx.setRemoved();}removed = true;} catch (Throwable t2) {if (logger.isWarnEnabled()) {logger.warn("Failed to remove a handler: " + ctx.name(), t2);}}if (removed) {fireExceptionCaught(new ChannelPipelineException(ctx.handler().getClass().getName() +".handlerAdded() has thrown an exception; removed.", t));} else {fireExceptionCaught(new ChannelPipelineException(ctx.handler().getClass().getName() +".handlerAdded() has thrown an exception; also failed to remove.", t));}}}
4.3 注册channel,绑定eventloop线程
经过前面两步, channel已经创建好和初始化好了, 但还没有看到 eventLoop 的影子. 实际上eventloop和channel间就差一个注册了.
也就是前面看到的 ChannelFuture regFuture = config().group().register(channel); 此处的group 即是 bossGroup.
// io.netty.channel.MultithreadEventLoopGroup#register(io.netty.channel.Channel)@Overridepublic ChannelFuture register(Channel channel) {// next() 相当于是一个负载均衡器, 会选择出一个合适的 eventloop 出来, 默认是round-robinreturn next().register(channel);}// io.netty.channel.MultithreadEventLoopGroup#next@Overridepublic EventLoop next() {return (EventLoop) super.next();}// io.netty.util.concurrent.MultithreadEventExecutorGroup#next@Overridepublic EventExecutor next() {// 使用前面创建的 PowerOfTwoEventExecutorChooser 进行调用// 默认实现为轮询return chooser.next();}// io.netty.util.concurrent.DefaultEventExecutorChooserFactory.PowerOfTwoEventExecutorChooser#next@Overridepublic EventExecutor next() {return executors[idx.getAndIncrement() & executors.length - 1];}// io.netty.channel.SingleThreadEventLoop#register(io.netty.channel.Channel)@Overridepublic ChannelFuture register(Channel channel) {// 使用 DefaultChannelPromise 封装channel, 再注册到 eventloop 中return register(new DefaultChannelPromise(channel, this));}@Overridepublic ChannelFuture register(final ChannelPromise promise) {ObjectUtil.checkNotNull(promise, "promise");// NioMessageUnsafepromise.channel().unsafe().register(this, promise);return promise;}// io.netty.channel.AbstractChannel.AbstractUnsafe#register@Overridepublic final void register(EventLoop eventLoop, final ChannelPromise promise) {if (eventLoop == null) {throw new NullPointerException("eventLoop");}if (isRegistered()) {promise.setFailure(new IllegalStateException("registered to an event loop already"));return;}if (!isCompatible(eventLoop)) {promise.setFailure(new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));return;}AbstractChannel.this.eventLoop = eventLoop;// inEventLoop() 判断当前线程是否在 eventLoop 中// 判断方式为直接比较 eventloop 线程也当前线程是否是同一个即可 Thread.currentThread() == this.thread;// 核心注册方法 register0()if (eventLoop.inEventLoop()) {register0(promise);} else {// 不在 eventLoop 中, 则异步提交任务给 eventloop 处理try {eventLoop.execute(new Runnable() {@Overridepublic void run() {register0(promise);}});} catch (Throwable t) {logger.warn("Force-closing a channel whose registration task was not accepted by an event loop: {}",AbstractChannel.this, t);closeForcibly();closeFuture.setClosed();safeSetFailure(promise, t);}}}// register0() 做真正的注册// io.netty.channel.AbstractChannel.AbstractUnsafe#register0private void register0(ChannelPromise promise) {try {// check if the channel is still open as it could be closed in the mean time when the register// call was outside of the eventLoopif (!promise.setUncancellable() || !ensureOpen(promise)) {return;}boolean firstRegistration = neverRegistered;// 具体的注册逻辑由子类实现, NioServerSocketChanneldoRegister();neverRegistered = false;registered = true;// Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the// user may already fire events through the pipeline in the ChannelFutureListener.// 几个扩展点: fireHandlerAdded() -> fireChannelRegistered() -> fireChannelActive()// part1: fireChannelAdded(), 它将会回调上面的 ServerBootstrapAcceptor 的添加 channelInitializerpipeline.invokeHandlerAddedIfNeeded();safeSetSuccess(promise);// part2: fireChannelRegistered()pipeline.fireChannelRegistered();// Only fire a channelActive if the channel has never been registered. This prevents firing// multiple channel actives if the channel is deregistered and re-registered.if (isActive()) {if (firstRegistration) {pipeline.fireChannelActive();} else if (config().isAutoRead()) {// This channel was registered before and autoRead() is set. This means we need to begin read// again so that we process inbound data.//// See https://github.com/netty/netty/issues/4805beginRead();}}} catch (Throwable t) {// Close the channel directly to avoid FD leak.closeForcibly();closeFuture.setClosed();safeSetFailure(promise, t);}}// io.netty.channel.nio.AbstractNioChannel#doRegister@Overrideprotected void doRegister() throws Exception {boolean selected = false;// 进行注册即是 JDK 的 ServerSocketChannel.register() 过程// 即 netty 与 socket 建立了关系连接, ops=0, 代表监听所有读事件for (;;) {try {// 一直注册直到成功// 此处 ops=0, 即不关注任何事件哦, 那么前面的 OP_ACCEPT 和这里又是什么关系呢?selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);return;} catch (CancelledKeyException e) {if (!selected) {// Force the Selector to select now as the "canceled" SelectionKey may still be// cached and not removed because no Select.select(..) operation was called yet.eventLoop().selectNow();selected = true;} else {// We forced a select operation on the selector before but the SelectionKey is still cached// for whatever reason. JDK bug ?throw e;}}}}
4.4 ServerBootstrapAcceptor 速览
前面我们看到, 在做 register() 完了之后, netty 会触发一个invokeHandlerAddedIfNeeded, 从而调用fireHandlerAdded. 此时将会触发 handlerAdded() 从而首次调用 ChannelInitializer.initChannel(), 从而将 ServerBootstrapAcceptor 添加到pipeline进来. ServerBootstrapAcceptor 独立做的事情不多,更多是交给父类处理。
ServerBootstrapAcceptor(final Channel channel, EventLoopGroup childGroup, ChannelHandler childHandler,Entry<ChannelOption<?>, Object>[] childOptions, Entry<AttributeKey<?>, Object>[] childAttrs) {this.childGroup = childGroup;this.childHandler = childHandler;this.childOptions = childOptions;this.childAttrs = childAttrs;// Task which is scheduled to re-enable auto-read.// It's important to create this Runnable before we try to submit it as otherwise the URLClassLoader may// not be able to load the class because of the file limit it already reached.//// See https://github.com/netty/netty/issues/1328//enableAutoReadTask = new Runnable() {@Overridepublic void run() {channel.config().setAutoRead(true);}};}// ServerBootstrapAcceptor 大部分情况下都是普通的 InboundHandler, 除了 channelRead() 时// io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead@Override@SuppressWarnings("unchecked")public void channelRead(ChannelHandlerContext ctx, Object msg) {final Channel child = (Channel) msg;child.pipeline().addLast(childHandler);setChannelOptions(child, childOptions, logger);for (Entry<AttributeKey<?>, Object> e: childAttrs) {child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());}try {// 它会向 childGroup 中提交channel过去, 从而使用 childGroup 产生作用childGroup.register(child).addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (!future.isSuccess()) {forceClose(child, future.cause());}}});} catch (Throwable t) {forceClose(child, t);}}
4.5 端口的绑定 doBind0
经过前面的channel的创建,初始化, Acceptor 的添加到handlerAdded(), 整个pipeline已经work起来了. 然后netty会回调之前添加好的 listeners, 其中一个便是 doBind0();
// 回顾下:...// Registration future is almost always fulfilled already, but just in case it's not.final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);regFuture.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {Throwable cause = future.cause();if (cause != null) {// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an// IllegalStateException once we try to access the EventLoop of the Channel.promise.setFailure(cause);} else {// Registration was successful, so set the correct executor to use.// See https://github.com/netty/netty/issues/2586promise.registered();doBind0(regFuture, channel, localAddress, promise);}}});...// io.netty.bootstrap.AbstractBootstrap#doBind0private static void doBind0(final ChannelFuture regFuture, final Channel channel,final SocketAddress localAddress, final ChannelPromise promise) {// This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up// the pipeline in its channelRegistered() implementation.// 这还是一个异步过程channel.eventLoop().execute(new Runnable() {@Overridepublic void run() {// channel.bind(), channel 与 端口绑定if (regFuture.isSuccess()) {channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);} else {promise.setFailure(regFuture.cause());}}});}// io.netty.channel.AbstractChannel#bind(java.net.SocketAddress, io.netty.channel.ChannelPromise)@Overridepublic ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {// bind() 被当作一个普通的出站事件, 在pipeline中被传递return pipeline.bind(localAddress, promise);}// io.netty.channel.DefaultChannelPipeline#bind(java.net.SocketAddress, io.netty.channel.ChannelPromise)@Overridepublic final ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {// 从tail开始传递return tail.bind(localAddress, promise);}// io.netty.channel.AbstractChannelHandlerContext#bind(java.net.SocketAddress, io.netty.channel.ChannelPromise)@Overridepublic ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {if (localAddress == null) {throw new NullPointerException("localAddress");}if (isNotValidPromise(promise, false)) {// cancelledreturn promise;}// 同样是一个pipeline式调用, bind() 是一个出站事件, 所以查找 outbound// 最终会调到 DefaultChannelPipeline 中// netty的pipeline机制就体现在这里, 它会一直查找可用的handler, 然后执行它, 直到结束final AbstractChannelHandlerContext next = findContextOutbound();// 获取其绑定的 executorEventExecutor executor = next.executor();if (executor.inEventLoop()) {next.invokeBind(localAddress, promise);} else {safeExecute(executor, new Runnable() {@Overridepublic void run() {next.invokeBind(localAddress, promise);}}, promise, null);}return promise;}// -------------------------------------------------------------------------// 出入站handler的查找实现, 非常简单, 却很有效 (该方法在 AbstractChannelHandlerContext 中实现,被所有handler通用)// io.netty.channel.AbstractChannelHandlerContext#findContextInboundprivate AbstractChannelHandlerContext findContextInbound() {// 以当前节点作为起点开始查找, 取第一个入站handler返回, 没有则说明 pipeline 已结束AbstractChannelHandlerContext ctx = this;do {ctx = ctx.next;} while (!ctx.inbound);return ctx;}// io.netty.channel.AbstractChannelHandlerContext#findContextOutboundprivate AbstractChannelHandlerContext findContextOutbound() {// 以当前节点作为起点开始查找, 取第一个出站handler返回, 没有则说明 pipeline 已结束AbstractChannelHandlerContext ctx = this;do {ctx = ctx.prev;} while (!ctx.outbound);return ctx;}// -------------------------------------------------------------------------// io.netty.channel.AbstractChannelHandlerContext#invokeBindprivate void invokeBind(SocketAddress localAddress, ChannelPromise promise) {if (invokeHandler()) {try {((ChannelOutboundHandler) handler()).bind(this, localAddress, promise);} catch (Throwable t) {notifyOutboundHandlerException(t, promise);}} else {bind(localAddress, promise);}}// 最终传递到 HeadContext 中进行处理// io.netty.channel.DefaultChannelPipeline.HeadContext#bind@Overridepublic void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)throws Exception {// unsafe 处理bind() 操作unsafe.bind(localAddress, promise);}// io.netty.channel.AbstractChannel.AbstractUnsafe#bind@Overridepublic final void bind(final SocketAddress localAddress, final ChannelPromise promise) {assertEventLoop();if (!promise.setUncancellable() || !ensureOpen(promise)) {return;}// See: https://github.com/netty/netty/issues/576if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&localAddress instanceof InetSocketAddress &&!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&!PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {// Warn a user about the fact that a non-root user can't receive a// broadcast packet on *nix if the socket is bound on non-wildcard address.logger.warn("A non-root user can't receive a broadcast packet if the socket " +"is not bound to a wildcard address; binding to a non-wildcard " +"address (" + localAddress + ") anyway as requested.");}boolean wasActive = isActive();try {// 这里会调用 jdk 的ServerSocketChannel接口, 实现真正的端口绑定// 至此, 服务对外可见doBind(localAddress);} catch (Throwable t) {safeSetFailure(promise, t);closeIfClosed();return;}// 判断是否是首次创建 channel, 如果是, 则调用 fireChannelActive() 传播channelActive事件if (!wasActive && isActive()) {// 这将会被稍后执行invokeLater(new Runnable() {@Overridepublic void run() {pipeline.fireChannelActive();}});}// 触发一些通知什么的, 结束了safeSetSuccess(promise);}// 最终的bind(), 是通过 jdk 底层的 serverSocketChannel 开启socket监听// io.netty.channel.socket.nio.NioServerSocketChannel#doBind@Overrideprotected void doBind(SocketAddress localAddress) throws Exception {if (PlatformDependent.javaVersion() >= 7) {// 调用 serverSocketChannel bind() 方法,开启socket监听javaChannel().bind(localAddress, config.getBacklog());} else {javaChannel().socket().bind(localAddress, config.getBacklog());}}
至此, bind 工作总算是完成了.我们来总结下它的主要工作:
1. 初始化一个channel, 根据设置里来, 我们使用 NioServerSocketChannel;
2. 过继现有的配置项给到channel;
3. 将channel与eventloop绑定做注册, 添加 ServerBootstrapAcceptor 到 pipeline 中;
4. 绑定完成后, 通知现有的handler, 触发系列事件: fireHandlerAdded() -> fireChannelRegistered() -> fireChannelActive();
5. 而bind()则作为一个出站事件, 被处理, 最终调用 jdk的ServerSocketChannel.register() 完成端口的开启;
不过有一点需要注意, 在这个过程中, 只有 bossGroup 起作用, 所有的 workGroup 都还在待命中. 我们目前看到的 pipeline 是这样的: head -> Acceptor -> tail;
讲了这么多, 有一种绕了一大圈的感觉有木有, 如果你自己直接使用nio写, 估计10行代码都不要就搞定了. 尴尬!
5. netty eventloop 主循环
evenloop是netty的重要概念, 但在前面我们并未细讲这玩意如何起作用(仅看过其创建过程而已), 不过这并不意味着它还没起作用, 而是我们暂时忽略了它. 每次要执行任务时, 总是会调用 eventloop().execute(...), 实际上这就是 eventloop的入口:
// io.netty.util.concurrent.SingleThreadEventExecutor#execute@Overridepublic void execute(Runnable task) {// execute 在线程池中, 是一个异步任务的提交方法, eventloop中同样也一样// 但是大部分情况下只是添加队列, 因为 eventloop 是单线程的if (task == null) {throw new NullPointerException("task");}// 向eventLoop队列中添加taskboolean inEventLoop = inEventLoop();addTask(task);// 如果自身就是运行在 eventloop 环境中, 添加完task后则不再做更多的事if (!inEventLoop) {// 如果不是在eventLoop线程中,则都会尝试创建新线程运行, 但实际会重新检测线程是否创建startThread();if (isShutdown() && removeTask(task)) {reject();}}if (!addTaskWakesUp && wakesUpForTask(task)) {wakeup(inEventLoop);}}// io.netty.util.concurrent.SingleThreadEventExecutor#addTask/*** Add a task to the task queue, or throws a {@link RejectedExecutionException} if this instance was shutdown* before.*/protected void addTask(Runnable task) {if (task == null) {throw new NullPointerException("task");}// taskQueue = MpscUnsafeUnboundedArrayQueue, 基于Unsafe 和 cas 实现的线程安全的队列if (!offerTask(task)) {// 添加失败,则走拒绝策略reject(task);}}// startThread, 看起来是开启线程的意思, 却又不太一样private void startThread() {// 所以实际上只会创建一次线程if (state == ST_NOT_STARTED) {// 抢到锁的线程才能调用start()方法if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {try {doStartThread();} catch (Throwable cause) {STATE_UPDATER.set(this, ST_NOT_STARTED);PlatformDependent.throwException(cause);}}}}// 开启eventLoop的线程// io.netty.util.concurrent.SingleThreadEventExecutor#doStartThreadprivate void doStartThread() {assert thread == null;// 它并不是简单的thread.start()executor.execute(new Runnable() {@Overridepublic void run() {thread = Thread.currentThread();if (interrupted) {thread.interrupt();}boolean success = false;updateLastExecutionTime();try {// 核心方法,由 SingleThreadEventExecutor.run() 实现// 当然是由具体的executor具体实现了, 此文为 NioEventLoop.run()SingleThreadEventExecutor.this.run();success = true;} catch (Throwable t) {logger.warn("Unexpected exception from an event executor: ", t);} finally {// 线程池关闭,优雅停机...}}});}
核心: 事件循环主框架, 既然是事件循环,则其必然是不会退出的。
// io.netty.channel.nio.NioEventLoop#run@Overrideprotected void run() {// 一个死循环检测任务, 这就 eventloop 的大杀器哦for (;;) {try {switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {case SelectStrategy.CONTINUE:continue;// 有任务时执行任务, 否则阻塞等待网络事件, 或被唤醒case SelectStrategy.SELECT:// select.select(), 带超时限制select(wakenUp.getAndSet(false));// 'wakenUp.compareAndSet(false, true)' is always evaluated// before calling 'selector.wakeup()' to reduce the wake-up// overhead. (Selector.wakeup() is an expensive operation.)//// However, there is a race condition in this approach.// The race condition is triggered when 'wakenUp' is set to// true too early.//// 'wakenUp' is set to true too early if:// 1) Selector is waken up between 'wakenUp.set(false)' and// 'selector.select(...)'. (BAD)// 2) Selector is waken up between 'selector.select(...)' and// 'if (wakenUp.get()) { ... }'. (OK)//// In the first case, 'wakenUp' is set to true and the// following 'selector.select(...)' will wake up immediately.// Until 'wakenUp' is set to false again in the next round,// 'wakenUp.compareAndSet(false, true)' will fail, and therefore// any attempt to wake up the Selector will fail, too, causing// the following 'selector.select(...)' call to block// unnecessarily.//// To fix this problem, we wake up the selector again if wakenUp// is true immediately after selector.select(...).// It is inefficient in that it wakes up the selector for both// the first case (BAD - wake-up required) and the second case// (OK - no wake-up required).if (wakenUp.get()) {selector.wakeup();}// fall throughdefault:}cancelledKeys = 0;needsToSelectAgain = false;// ioRatio 为io操作的占比, 和运行任务相比, 默认为 50:50final int ioRatio = this.ioRatio;if (ioRatio == 100) {try {// step1. 运行io操作processSelectedKeys();} finally {// Ensure we always run tasks.// step2. 运行task任务runAllTasks();}} else {final long ioStartTime = System.nanoTime();try {processSelectedKeys();} finally {// Ensure we always run tasks.final long ioTime = System.nanoTime() - ioStartTime;// 运行任务的最长时间runAllTasks(ioTime * (100 - ioRatio) / ioRatio);}}} catch (Throwable t) {handleLoopException(t);}// Always handle shutdown even if the loop processing threw an exception.try {if (isShuttingDown()) {closeAll();if (confirmShutdown()) {return;}}} catch (Throwable t) {handleLoopException(t);}}}// select, 事件循环的依据private void select(boolean oldWakenUp) throws IOException {Selector selector = this.selector;try {int selectCnt = 0;long currentTimeNanos = System.nanoTime();// 带超时限制, 默认最大超时1s, 但当有延时任务处理时, 以它为标准long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);for (;;) {long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;if (timeoutMillis <= 0) {// 超时则立即返回if (selectCnt == 0) {selector.selectNow();selectCnt = 1;}break;}// If a task was submitted when wakenUp value was true, the task didn't get a chance to call// Selector#wakeup. So we need to check task queue again before executing select operation.// If we don't, the task might be pended until select operation was timed out.// It might be pended until idle timeout if IdleStateHandler existed in pipeline.if (hasTasks() && wakenUp.compareAndSet(false, true)) {selector.selectNow();selectCnt = 1;break;}int selectedKeys = selector.select(timeoutMillis);selectCnt ++;if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {// - Selected something,// - waken up by user, or// - the task queue has a pending task.// - a scheduled task is ready for processingbreak;}if (Thread.interrupted()) {// Thread was interrupted so reset selected keys and break so we not run into a busy loop.// As this is most likely a bug in the handler of the user or it's client library we will// also log it.//// See https://github.com/netty/netty/issues/2426if (logger.isDebugEnabled()) {logger.debug("Selector.select() returned prematurely because " +"Thread.currentThread().interrupt() was called. Use " +"NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");}selectCnt = 1;break;}long time = System.nanoTime();if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {// timeoutMillis elapsed without anything selected.selectCnt = 1;} else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {// The selector returned prematurely many times in a row.// Rebuild the selector to work around the problem.logger.warn("Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",selectCnt, selector);rebuildSelector();selector = this.selector;// Select again to populate selectedKeys.selector.selectNow();selectCnt = 1;break;}currentTimeNanos = time;}if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {if (logger.isDebugEnabled()) {logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",selectCnt - 1, selector);}}} catch (CancelledKeyException e) {if (logger.isDebugEnabled()) {logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",selector, e);}// Harmless exception - log anyway}}
反正整体就是这样了, 循环检测select, 运行io事件及execute task.
有了这个 eventloop, 整体server就可以run起来了, 不管是有外部请求进来, 还是有内部任务提交, 都将被eventloop执行.
不过还有一点未澄清的: 前面在做channel.register()时传递了一个 ops=0, 那它是如何监听新连接事件的呢?
实际上它是在注册激活完成之后, 再进行了一个read()的操作, 重新将 OP_ACCEPT 添加到 selectionKey 中了.(没错,底层永远没那么多花招)
// io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive@Overridepublic void channelActive(ChannelHandlerContext ctx) throws Exception {ctx.fireChannelActive();// 会触发 read() 流程, 修改 selectionKey 的 ops 标志位readIfIsAutoRead();}...// io.netty.channel.AbstractChannel.AbstractUnsafe#beginRead@Overridepublic final void beginRead() {assertEventLoop();if (!isActive()) {return;}try {doBeginRead();} catch (final Exception e) {invokeLater(new Runnable() {@Overridepublic void run() {pipeline.fireExceptionCaught(e);}});close(voidPromise());}}// io.netty.channel.nio.AbstractNioMessageChannel#doBeginRead@Overrideprotected void doBeginRead() throws Exception {if (inputShutdown) {return;}super.doBeginRead();}// io.netty.channel.nio.AbstractNioChannel#doBeginRead@Overrideprotected void doBeginRead() throws Exception {// Channel.read() or ChannelHandlerContext.read() was calledfinal SelectionKey selectionKey = this.selectionKey;if (!selectionKey.isValid()) {return;}readPending = true;final int interestOps = selectionKey.interestOps();if ((interestOps & readInterestOp) == 0) {// readInterestOp, 即是前面设置的 OP_ACCEPTselectionKey.interestOps(interestOps | readInterestOp);}}
本文有点长了, 留点东西下篇继续: io事件如何处理? 任务如何执行?
了解更多java后端架构知识以及最新面试宝典
看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力
出处:https://www.cnblogs.com/yougewe/p/13415440.html
