2020年,大火的Python和JavaScript是否会被取而代之?
核心优势:它是一种比 JavaScript 更棒的编程语言。
主要缺点:不得不面对 JavaScript 语言和 JavaScript 的强烈拥护者的挑战。
class Complex {
double _r,_i;
Complex(this._r,this._i);
double get r => _r;
double get i => _i;
String toString() => "($r,$i)";
Complex operator +(Complex other) => new Complex(r+other.r,i+other.i);
Complex operator *(Complex other) =>
new Complex(r*other.r-i*other.i,r*other.i+other.r*i);
double abs() => r*r+i*i;
}
void main() {
double start_x=-1.5;
double start_y=-1.0;
double step_x=0.03;
double step_y=0.1;
for(int y=0;y<20;y++) {
String line="";
for(int x=0;x<70;x++) {
Complex c=new Complex(start_x+step_x*x,start_y+step_y*y);
Complex z=new Complex(0.0, 0.0);
for(int i=0;i<100;i++) {
z=z*(z)+c;
if(z.abs()>2) {
break;
}
}
line+=z.abs()>2 ? " " : "*";
}
print(line);
}
}
核心优势:它让函数式编程变得异常简单,对并发的支持非常棒。
主要缺点:需要有 OTP 基础,但掌握 OTP 却没那么容易。
defmodule Mandelbrot do
def set do
xsize = 59
ysize = 21
minIm = -1.0
maxIm = 1.0
minRe = -2.0
maxRe = 1.0
stepX = (maxRe - minRe) / xsize
stepY = (maxIm - minIm) / ysize
Enum. each( 0..ysize, fn y ->
im = minIm + stepY * y
Enum.map( 0..xsize, fn x ->
re = minRe + stepX * x
62 - loop( 0, re, im, re, im, re*re+im*im)
end) |> IO.puts
end)
end
defp loop(n, _, _, _, _, _) when n>= 30, do: n
defp loop(n, _, _, _, _, v) when v> 4.0, do: n -1
defp loop(n, re, im, zr, zi, _) do
a = zr * zr
b = zi * zi
loop(n+ 1, re, im, a-b+re, 2*zr*zi+im, a+b)
end
end
Mandelbrot. set
核心优势:上手简单,对并发的支持非常出色。
主要缺点:缺少泛型支持(暂时的)。
package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/png"
"math/cmplx"
"os"
)
const (
maxEsc = 100
rMin = -2.
rMax = .5
iMin = -1.
iMax = 1.
width = 750
red = 230
green = 235
blue = 255
)
func mandelbrot(a complex128) float64 {
i := 0
for z := a; cmplx.Abs(z) < 2 && i < maxEsc; i++ {
z = z*z + a
}
return float64(maxEsc-i) / maxEsc
}
func main() {
scale := width / (rMax - rMin)
height := int(scale * (iMax - iMin))
bounds := image.Rect(0, 0, width, height)
b := image.NewNRGBA(bounds)
draw.Draw(b, bounds, image.NewUniform(color.Black), image.ZP, draw.Src)
for x := 0; x < width; x++ {
for y := 0; y < height; y++ {
fEsc := mandelbrot(complex(
float64(x)/scale+rMin,
float64(y)/scale+iMin))
b.Set(x, y, color.NRGBA{uint8(red * fEsc),
uint8(green * fEsc), uint8(blue * fEsc), 255})
}
}
f, err := os.Create("mandelbrot.png")
if err != nil {
fmt.Println(err)
return
}
if err = png.Encode(f, b); err != nil {
fmt.Println(err)
}
if err = f.Close(); err != nil {
fmt.Println(err)
}
}
核心优势:为科学家精心设计。
主要缺点:面临着数据科学之王 Python 的竞争。
using Images
@inline function hsv2rgb(h, s, v)
const c = v * s
const x = c * ( 1 - abs(((h/ 60) % 2) - 1))
const m = v - c
const r,g,b =
if h < 60
(c, x, 0)
elseif h < 120
(x, c, 0)
elseif h < 180
( 0, c, x)
elseif h < 240
( 0, x, c)
elseif h < 300
(x, 0, c)
else
(c, 0, x)
end
(r + m), (b + m), (g + m)
end
function mandelbrot()
const w, h = 1000, 1000
const zoom = 0.5
const moveX = 0
const moveY = 0
const img = Array{ RGB{Float64}}(h, w)
const maxIter = 30
for x in 1:w
for y in 1:h
i = maxIter
const c = Complex(
( 2*x - w) / (w * zoom) + moveX,
( 2*y - h) / (h * zoom) + moveY
)
z = c
while abs(z) < 2 && (i -= 1) > 0
z = z^ 2 + c
end
const r,g,b = hsv2rgb(i / maxIter * 360, 1, i / maxIter)
img[y,x] = RGB{Float64}(r, g, b)
end
end
save( "mandelbrot_set.png", img)
end
mandelbrot()
核心优势:比 Java 更强大。
主要缺点:Kotlin 非常庞大,甚至比 Java 更庞大。
import java.awt.Graphics
import java.awt.image.BufferedImage
import javax.swing.JFrame
class Mandelbrot: JFrame("Mandelbrot Set") {
companion object {
private const val MAX_ITER = 570
private const val ZOOM = 150.0
}
private val img: BufferedImage
init {
setBounds(100, 100, 800, 600)
isResizable = false
defaultCloseOperation = EXIT_ON_CLOSE
img = BufferedImage(width, height, BufferedImage.TYPE_INT_RGB)
for (y in 0 until height) {
for (x in 0 until width) {
var zx = 0.0
var zy = 0.0
val cX = (x - 400) / ZOOM
val cY = (y - 300) / ZOOM
var iter = MAX_ITER
while (zx * zx + zy * zy < 4.0 && iter > 0) {
val tmp = zx * zx - zy * zy + cX
zy = 2.0 * zx * zy + cY
zx = tmp
iter--
}
img.setRGB(x, y, iter or (iter shl 7))
}
}
}
override fun paint(g: Graphics) {
g.drawImage(img, 0, 0, this)
}
}
fun main(args: Array<String>) {
Mandelbrot().isVisible = true
}
核心优势: Lua 是一种小巧、简单、快速、可嵌入、可移植和灵活的编程语言。
主要缺点:Lua 被忽视了 26 年了。现在还能掀起风浪吗?
local maxIterations = 250
local minX, maxX, minY, maxY = -2.5, 2.5, -2.5, 2.5
local miX, mxX, miY, mxY
function remap( x, t1, t2, s1, s2 )
local f = ( x - t1 ) / ( t2 - t1 )
local g = f * ( s2 - s1 ) + s1
return g;
end
function drawMandelbrot()
local pts, a, as, za, b, bs, zb, cnt, clr = {}
for j = 0, hei - 1 do
for i = 0, wid - 1 do
a = remap( i, 0, wid, minX, maxX )
b = remap( j, 0, hei, minY, maxY )
cnt = 0; za = a; zb = b
while( cnt < maxIterations ) do
as = a * a - b * b; bs = 2 * a * b
a = za + as; b = zb + bs
if math.abs( a ) + math.abs( b ) > 16 then break end
cnt = cnt + 1
end
if cnt == maxIterations then clr = 0
else clr = remap( cnt, 0, maxIterations, 0, 255 )
end
pts[1] = { i, j, clr, clr, 0, 255 }
love.graphics.points( pts )
end
end
end
function startFractal()
love.graphics.setCanvas( canvas ); love.graphics.clear()
love.graphics.setColor( 255, 255, 255 )
drawMandelbrot(); love.graphics.setCanvas()
end
function love.load()
wid, hei = love.graphics.getWidth(), love.graphics.getHeight()
canvas = love.graphics.newCanvas( wid, hei )
startFractal()
end
function love.mousepressed( x, y, button, istouch )
if button == 1 then
startDrag = true; miX = x; miY = y
else
minX = -2.5; maxX = 2.5; minY = minX; maxY = maxX
startFractal()
startDrag = false
end
end
function love.mousereleased( x, y, button, istouch )
if startDrag then
local l
if x > miX then mxX = x
else l = x; mxX = miX; miX = l
end
if y > miY then mxY = y
else l = y; mxY = miY; miY = l
end
miX = remap( miX, 0, wid, minX, maxX )
mxX = remap( mxX, 0, wid, minX, maxX )
miY = remap( miY, 0, hei, minY, maxY )
mxY = remap( mxY, 0, hei, minY, maxY )
minX = miX; maxX = mxX; minY = miY; maxY = mxY
startFractal()
end
end
function love.draw()
love.graphics.draw( canvas )
end
关键优势:开发效率非常高,编程效率能提升接近 5 倍。
主要缺点:它需要一种与众不同的编程思维。但是人总是害怕改变,很难接受这种编程思维。
Object subclass: #FractalTree
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'RosettaCode'
"Methods for FractalTree class"
tree: aPoint length: aLength angle: anAngle
| p a |
(aLength > 10) ifTrue: [
p := Pen new.
p up.
p goto: aPoint.
p turn: anAngle.
p down.
5 timesRepeat: [
p go: aLength / 5.
p turn: 5.
].
a := anAngle - 30.
3 timesRepeat: [
self tree: p location length: aLength * 0. 7 angle: a.
a := a + 30.
]
].
draw
Display restoreAfter: [
Display fillWhite.
self tree: 700@700 length: 200 angle: 0.
]
"Execute"
FractalTree new draw.
关键优势:有助于提高软件的可靠性。
主要缺点:它学起来很难。借用检查器比较复杂且难以理解。
extern crate image;
extern crate num_complex;
use std::fs::File;
use num_complex::Complex;
fn main() {
let max_iterations = 256u16;
let img_side = 800u32;
let cxmin = -2f32;
let cxmax = 1f32;
let cymin = -1.5f32;
let cymax = 1.5f32;
let scalex = (cxmax - cxmin) / img_side as f32;
let scaley = (cymax - cymin) / img_side as f32;
// Create a new ImgBuf
let mut imgbuf = image::ImageBuffer:: new(img_side, img_side);
// Calculate for each pixel
for (x, y, pixel) in imgbuf.enumerate_pixels_mut() {
let cx = cxmin + x as f32 * scalex;
let cy = cymin + y as f32 * scaley;
let c = Complex:: new(cx, cy);
let mut z = Complex:: new( 0f32, 0f32);
let mut i = 0;
for t in 0..max_iterations {
if z.norm() > 2.0 {
break;
}
z = z * z + c;
i = t;
}
*pixel = image::Luma([i as u8]);
}
// Save image
let fout = &mut File::create( "fractal.png").unwrap();
image::ImageLuma8(imgbuf).save(fout, image::PNG).unwrap();
}
核心优势:它是 JavaScript 的超集 , 对 JavaScript 开发者来说没啥太大变化。
主要缺点:由于它是 JavaScript 的超级,这就导致了它同样也继承了 JavaScript 的一些历史包袱。
// Set up canvas for drawing
var canvas: HTMLCanvasElement = document.createElement( 'canvas')
canvas.width = 600
canvas.height = 500
document.body.appendChild(canvas)
var ctx: CanvasRenderingContext2D = canvas.getContext( '2d')
ctx.fillStyle = '#000'
ctx.lineWidth = 1
// constants
const degToRad: number = Math.PI / 180.0
const totalDepth: number = 9
/** Helper function that draws a line on the canvas */
function drawLine(x1: number, y1: number, x2: number, y2: number): void {
ctx.moveTo(x1, y1)
ctx.lineTo(x2, y2)
}
/** Draws a branch at the given point and angle and then calls itself twice */
function drawTree(x1: number, y1: number, angle: number, depth: number): void {
if ( depth !== 0) {
let x2: number = x1 + (Math.cos(angle * degToRad) * depth * 10.0)
let y2: number = y1 + (Math.sin(angle * degToRad) * depth * 10.0)
drawLine(x1, y1, x2, y2)
drawTree(x2, y2, angle - 20, depth - 1)
drawTree(x2, y2, angle + 20, depth - 1)
}
}
// actual drawing of tree
ctx.beginPath()
drawTree( 300, 500, -90, totalDepth)
ctx.closePath()
ctx.stroke()
(*本文为AI科技大本营转载文章,转载请联系原作者)
◆
精彩推荐
◆
人工智能数学基础系列公开课通过人工智能热点问题开始,引出其中蕴涵的数学原理,然后构建解决实际问题的数学模型和方法,兼具趣味性与实用性。
1月16日晚8:00, 哈工大屈教授在线直播课---『看得见 』的数学,带大家解密计算机视觉背后的数学知识!
点击阅读原文,或扫描海报二维码免费报名
加入公开课福利群,每周还有精选学习资料、技术图书等福利发送、60+公开课免费学习
你点的每个“在看”,我都认真当成了AI